HDU 5829 Rikka with Subset
快速数论变换ntt。
早上才刚刚接触了一下FFT,然后就开始撸这题了,所以要详细地记录一下。
看了这篇巨巨的博客才慢慢领会的:http://blog.csdn.net/cqu_hyx/article/details/52194696
FFT的作用是计算卷积。可以简单的理解为计算多项式*多项式最后得到的多项式,暴力计算是O(n*n)的,FFT可以做到O(nlogn)。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar(); x = ;while(!isdigit(c)) c = getchar();
while(isdigit(c)) { x = x * + c - ''; c = getchar(); }
} const int maxn=;
const LL mod=;
const LL G=; LL t[maxn],a[maxn],b[maxn],c[maxn],f[maxn],fac[maxn],NI[maxn];
int T,n,m;
LL rev[maxn],N,len,inv; LL POW[maxn],NiPOW[maxn]; LL power(LL x,LL y)
{
LL res=;
for(;y;y>>=,x=(x*x)%mod)
{
if(y&)res=(res*x)%mod;
}
return res;
} void init()
{
while((n+m)>=(<<len))len++;
N=(<<len);
inv=power(N,mod-);
for(int i=;i<N;i++)
{
LL pos=;
LL temp=i;
for(int j=;j<=len;j++)
{
pos<<=;pos |= temp&;temp>>=;
}
rev[i]=pos;
}
} void ntt(LL *a,LL n,LL re)
{
for(int i=;i<n;i++)
{
if(rev[i]>i)
{
swap(a[i],a[rev[i]]);
}
}
for(int i=;i<=n;i<<=)
{
int mid=i>>; LL wn=power(G,(mod-)/i);
if(re) wn=power(wn,(mod-));
for(int j=;j<n;j+=i)
{
LL w=;
for(int k=;k<mid;k++)
{
int temp1=a[j+k];
int temp2=(LL)a[j+k+mid]*w%mod;
a[j+k]=(temp1+temp2);if(a[j+k]>=mod)a[j+k]-=mod;
a[j+k+mid]=(temp1-temp2);if(a[j+k+mid]<)a[j+k+mid]+=mod;
w=(LL)w*wn%mod;
}
}
}
if(re)
{
for(int i=;i<n;i++)
{
a[i]=(LL)a[i]*inv%mod;
}
}
} bool cmp(LL a,LL b) {return a>b;} LL extend_gcd(LL a,LL b,LL &x,LL &y)
{
if(a==&&b==) return -;
if(b==){x=;y=;return a;}
LL d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
} LL mod_reverse(LL a,LL n)
{
LL x,y;
LL d=extend_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
} int main()
{
fac[]=; for(int i=;i<=;i++) fac[i]=(LL)i*fac[i-]%mod;
for(int i=;i<=;i++) NI[i]=mod_reverse(fac[i],mod);
POW[]=; for(int i=;i<=;i++) POW[i]=(LL)*POW[i-]%mod;
for(int i=;i<=;i++) NiPOW[i]=mod_reverse(POW[i],mod); scanf("%d",&T); while(T--)
{
len=; memset(c,,sizeof c); memset(a,,sizeof a); memset(b,,sizeof b); scanf("%d",&n); m=n;
for(int i=;i<=n;i++) { int x; scanf("%d",&x); t[i]=(LL)x; } sort(t+,t++n,cmp);
for(int i=;i<n;i++)
{
LL x=fac[n]*NI[i]%mod;
a[i]=x*POW[n-i]%mod;
}
for(int i=;i<=n;i++) b[n-i]=t[i]*fac[i-]%mod; init(); ntt(a,N,); ntt(b,N,);
for(int i=;i<=N;i++) c[i]=a[i]*b[i]%mod;
ntt(c,N,); for(int i=;i<n;i++) f[n-i]=c[i]*NI[n]%mod;
for(int i=;i<=n;i++) f[i]=f[i]*NI[i-]%mod;
for(int i=;i<=n;i++) f[i]=f[i]*NiPOW[i]%mod;
LL ans=; for(int i=;i<=n;i++) { ans=(ans+f[i])%mod; printf("%lld ",ans); }
printf("\n");
}
return ;
}
HDU 5829 Rikka with Subset的更多相关文章
- HDU 5829 Rikka with Subset(NTT)
题意 给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(99 ...
- HDU 6092`Rikka with Subset 01背包变形
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 6092 Rikka with Subset
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- hdu 6092 Rikka with Subset(逆向01背包+思维)
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)
题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...
- hdu 6092 Rikka with Subset (集合计数,01背包)
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
- HDU 6092 Rikka with Subset(dp)
http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...
- hdu 6092 Rikka with Subset(多重背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...
- HDU 6092:Rikka with Subset(dp)
分析 很多个较小的数字可以随机组合成较大的数字,所以B数组从小到大开始遍历,除了空集,最小的那个存在的个数对应的数字必然是a数组中的数字. 每求出这一部分之后,更新后续的B序列. 分析完后,主要的难点 ...
随机推荐
- flexbox应用举例
我们常说的"flexbox"其实包含"父元素","子元素"2个部分,将"父元素"定义为一个flexbox,则在" ...
- ActiveMQ的简单例子应用
ActiveMQ是一种消息中间件,它实现了JMS规范,提供点对点和订阅-发布两种模式.下面介绍下ActiveMQ的使用: 一.环境的搭建 首先我们需要下载ActiveMQ的安装包,下载地址http:/ ...
- css学习笔记1
:before,:after伪元素 伪元素特性(目前已经遇到的) 它不存在于文档中,所以js无法操作它 它属于主元素本身,有些伪类仅仅是代表元素内容的一部分,譬如:first-letter代表第一个字 ...
- Transform.TransformDirection 变换方向
官方描述: JavaScript ⇒ TransformDirection(direction: Vector3): Vector3; C# ⇒ Vector3 TransformDirection( ...
- C++ unordered_map 在key为string类型和char*类型时测试时间性能差异
测试系统liunx centos6.5 代码如下 #include <string.h> #include <sstream> #include <list> #i ...
- 关于mysql严格模式的开启、关闭
由于项目中对一些默认值设置问题,以及种种原因,mysql数据库需要使用非严格模式开发(mysql最近的版本默认是开启严格模式的). linux下mysql服务下操作步骤是: 1.进入mysql服务 ...
- GTK+2.0学习——第一个GTK程序
#include <gtk/gtk.h> #include <stdio.h> #include <stdlib.h> /* *点击了关闭按钮之后的回调函数 *gt ...
- C# 连接 Access 数据库
c#连接Access 数据库需要System.Data, System.Data.OleDb using System.Data using System.Data.OleDb public OleD ...
- 简单工厂设计模式(Simple Factory Design Pattern)
[引言]最近在Youtub上面看到一个讲解.net设计模式的视频,其中作者的一个理解让我印象很深刻:所谓的设计模式其实就是运用面向对象编程的思想来解决平时代码中的紧耦合,低扩展的问题.另外一点比较有见 ...
- hdu1722
链接 一份切成q份需要q刀,切成p份需要p刀:切的部分总会有重复,即gcd(p,q),减去重复部分就是要切的刀数 #include<stdio.h> int gcd(int n,int m ...