HDU - 2290

Time Limit: 5000MS   Memory Limit: 64768KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

Scofield is a hero in American show "Prison Break". He had broken the prison and started a big runaway. 
Scofield has a map of US with cities and bidirectional roads between them. The lengths of roads are known. Some cities get a lot of cops who are very troublesome. Now Scofield needs your help to arrange his runaway route.

He needs a shortest path between two cities, while the quantity of the police in any city, except the start city and end city, on the route is no more than k.

You should know that it is very hard to escape. Scofield is very smart but not good at computer. Now Scofield is in trouble, can you help him with your computer?

Input

The input consists of several test cases. There is an integer T on the first line indicating the number of test cases. 
For each case, the first line consists of two integers N and M. N is the number of cities; M is the number of roads. The next line contains N integers C1, C2... CN, where Ci is the number of cops in city i.

Then followed M lines, each line consists of three integer, u, v, w, indicating there is a road with length w between city u and city v.

The following line consists of an integer Q, indicating the number of queries. Each of the following Q lines consists of three integers, u, v, k, indicating the query for the shortest path between city u and city v with limitation of k cops.

Technical Specification

1. T ≤ 20 
2. 2 ≤ N ≤ 200, 0 ≤ M ≤ n * (n – 1) / 2 
3. 0 ≤ Ci ≤ 1000,000,000 
4. 0 ≤ u, v < N, 0 ≤ w ≤ 1000, 0 ≤ k ≤ 1000,000,000 
5. 0 ≤ Q ≤ 100000 
6. There is no more than ONE road between two cities and no road between the same cities. 
7. For each query, u is not equal to v. 
8. There is ONE empty line after each test case. 

Output

For each query, output a single line contains the length of the shortest path. Output "-1" if you can't find the path. Please output an empty line after each test case.

Sample Input

1
4 4
100 2 3 100
0 1 1
0 2 1
1 3 2
2 3 3
2
0 3 2
0 3 1

Sample Output

3
-1

Source

题意是,有n个城市,m条无向路径,每个城市有ci个警察,给出q个询问,求从城市a到城市b,中途城市(不包括起点终点)警察数不超过k的权值和最小的路径

解法:由于起点和终点都不是固定的,所以要求多源最短路,很容易想到要用floyd。但是又有问题,每次询问都有k个警察的限制,怎么办呢。我们考虑floyd的原理,每次找到一个点,对经过那个点的边进行松弛,那么我们可以记录下每次松弛的结果。可以开个三维数组M[i][j][k],k表示松弛第k个点时的状态。然后进行floyd。问题在于,我怎么可以根据k来选择对应状态。floyd是从第一个点松弛到最后一个点,那我们只要根据ci的大小,对点进行排序,然后再floyd,就可以得到根据ci的大小floyd出来的状态。所以我们只要找到一个最大的ci,又不超过k的时候的状态,就找到结果了。

注意的地方:

1.由于c比较大,需要离散化。

2.每个case后都要有一个空行。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#define X first
#define Y second
using namespace std;
typedef pair<int,int> pii;
typedef long long ll;
const int maxn=;
const int INF=0x3f3f3f3f;
pii C[maxn];
int n,m,M[maxn][maxn][maxn],N[maxn];
void init()
{
for (int i=; i<n; i++)
for (int j=; j<n; j++)
M[i][j][]=INF;
}
void floyd()
{
for (int k=; k<=n; k++)
{
for (int l=; l<n; l++)
for (int r=; r<n; r++)
M[l][r][k]=M[l][r][k-];
for (int l=; l<n; l++)if (M[l][k-][k-]!=INF)
for (int r=; r<n; r++)if (M[k-][r][k-]!=INF)
if (M[l][r][k]>M[l][k-][k]+M[k-][r][k])//由于k从1开始,而下标从0开始,所以k-1
M[l][r][k]=M[l][k-][k]+M[k-][r][k];
}
}
int main()
{
int T,a,b,c,q;
scanf("%d",&T);
while (T--)
{
scanf("%d%d",&n,&m);
for (int i=; i<n; i++)
scanf("%d",&C[i].X),C[i].Y=i;
sort(C,C+n);
for (int i=; i<n; i++)//进行离散
N[C[i].Y]=i;
init();
for (int i=; i<m; i++)
{
scanf("%d%d%d",&a,&b,&c);
M[N[a]][N[b]][]=M[N[b]][N[a]][]=c;//这里用N[a]而不是a,因为N[a]存的才是排过序的
}
floyd();
scanf("%d",&q);
while (q--)
{
scanf("%d%d%d",&a,&b,&c);
int ans=M[N[a]][N[b]][n];
for (int i=; i<n; i++)//n比较小,可以枚举,也可以二分
if (C[i].X>c)
{
ans=M[N[a]][N[b]][i];//这里的i其实是i-1+1,因为状态从1开始,要+1
break;
}
printf("%d\n",ans==INF?-:ans);
}
puts("");
}
return ;
}

HDU - 2290 Find the Path(最短路)的更多相关文章

  1. HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]

    HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...

  2. Hdu 4725 The Shortest Path in Nya Graph (spfa)

    题目链接: Hdu 4725 The Shortest Path in Nya Graph 题目描述: 有n个点,m条边,每经过路i需要wi元.并且每一个点都有自己所在的层.一个点都乡里的层需要花费c ...

  3. 2015合肥网络赛 HDU 5492 Find a path 动归

    HDU 5492 Find a path 题意:给你一个矩阵求一个路径使得 最小. 思路: 方法一:数据特别小,直接枚举权值和(n + m - 1) * aver,更新答案. 方法二:用f[i][j] ...

  4. HDU 4725 The Shortest Path in Nya Graph(最短路拆点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4725 题意:n个点,某个点属于某一层.共有n层.第i层的点到第i+1层的点和到第i-1层的点的代价均是 ...

  5. HDU 4725 The Shortest Path in Nya Graph-【SPFA最短路】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4725 题意:有N个点和N层..一层有X个点(0<=X<=N).两邻两层间有一条路花费C.还有M ...

  6. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. hdu 4725 The Shortest Path in Nya Graph (最短路+建图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. HDU - 6582 Path (最短路+最小割)

    题意:给定一个n个点m条边的有向图,每条边有个长度,可以花费等同于其长度的代价将其破坏掉,求最小的花费使得从1到n的最短路变长. 解法:先用dijkstra求出以1为源点的最短路,并建立最短路图(只保 ...

  9. HDU 4725 The Shortest Path in Nya Graph (最短路 )

    This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just ...

随机推荐

  1. cpu组相连映射

    组相联映射方式 组相联映射方式 是全相联映射方式和直接相联映射方式的结合,结合两者的优点 · 方法:把Cache分为若干组,每组含有若干行. 组间直接映射,组内全相联映射. (图7) · 映射过程:( ...

  2. [ios2]ios系统中各种设置项的url链接

    在代码中调用如下代码:(ps: ios 5.0 以后不可用)NSURL*url=[NSURL URLWithString:@"prefs:root=WIFI"];[[UIAppli ...

  3. Kattis - Biased Standings

    Biased Standings Usually, results of competitions are based on the scores of participants. However, ...

  4. Linux sendmail 详解

    Internet上最基本的服务,现在应该大部分人都有自己的邮箱吧,用的人多,但理解的人估计没多少,我自己以前也是常常用,但对其原理并不操心.今天就来操心下,进行个小总结 一.邮件服务的基本流程     ...

  5. 终于了解了User-Agent的历史了

    你是否好奇标识浏览器身份的User-Agent,为什么每个浏览器都有Mozilla字样? 1 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.3 ...

  6. Win10下Mysql5.7.13,解压版安装流程

    一.环境变量配置 1.将下载好的压宿包解压到安装目录,我的安装目录就是:D:\DevelopmentTool\Mysql5.7.13\mysql-5.7.13-winx64 2.鼠标选择计算机右键,点 ...

  7. mysql的数据类型与列属性

  8. CSU 1811 Tree Intersection

    莫队算法,$dfs$序. 题目要求计算将每一条边删除之后分成的两棵树的颜色的交集中元素个数. 例如删除$u->v$,我们只需知道以$v$为$root$的子树中有多少种不同的颜色(记为$qq$), ...

  9. [HMLY]3.如何使用Xcode Targets管理开发和生产版本?

    本文原地址:http://www.appcoda.com/using-xcode-targets/ 在开始此教程之前,我们假设你已经完成了应用程序的开发和测试,现在准备提交生产发布.问题是,某些web ...

  10. 初遇locust

    大概有四个月没有用过PYTHON的我. 今天差点都不知道怎么运行了. 说起来真是丢人呐. 幸好还是存留着一点点印象,再加上看了一下以前写的几篇文章, 还是比较快的想起来了.不然真的是要崩溃了. 刚开始 ...