以前一直觉得自己没有写代码的资质,太急于求成,以为一天就能写好几个功能,几千行代码,于是就没耐心了,没心情学下去了....但是最近发现其实写代码是一个漫长的过程,都是在修修改改中成长起来的。于是今天试着慢慢用QTP测下参数限制,虽然代码量不多,其实也算不上编程,O(∩_∩)O哈哈~但也是个慢慢积累的过程。

转载要说明来自  博客园--邦邦酱好 哦~

首先,我有一段登陆系统的测试模块,可以把它设为可重用的,并且参数化必要的信息,比如登陆用户名密码等等,这些就不细说了。可以参见《QTP自动化测试实践》8.3节 Action测试输入的参数化,调用过程见上一篇关于action的文章。

现在我要测试参数的限制:

第一步,必须要在当前项目下新建一个action,步骤如下:

选择Insert|Call to New Action:

然后在弹出框中填写新建action的name和description,可不可重用,以及新action的位置,这里我的参数检查功能是在登陆模块之后,所以选择第一个At the end of the test。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAS8AAAEECAIAAAD21yV6AAAY50lEQVR4nO2d7W8UR57Hf3+E/wJLa2eFeRGcjPZN8iIDRJANCbLWgLngJuEsOXcHF2UhDxCMslrNEgiQEB8YYjws2STQJCKXhyWYJwdnA0lu9iArnRItD8beQDCYCeRFdNKp70X1Q3VVdU93T7enZvz96CerpqYeftXd36ma9vSvaGJiYuCj8zAYrOZGez65AIPBdDDa++dvYDBYRSu+ffyJBx7NNzWna0888Gjx7eOsCxo8+jcYDFbRHmu5/9ievT9983W6dmzP3sda7mdd0L5P/waDwSpavqn57vkvfzj4Zrp29/yX+aZm1gW9dfLb+rG9D9GStb5EA9mBF39B9/7TgVq7AQuwfFPzndLZa28PXH9n4Po7A9ffto3lXGMJJ33dZ3vsWm/v8So6iTuls/mmZtYF/enUd7xt+5d7iYiIHvrDd8JbWdqbD5HDr98MLbZknS9RjQ0/MYuI7n3iLS7zD0to1vpt6Qxq+IlZ4cPx21vrfyE4A9PJ8k3N5a9Gv/9jv2cH+r8/YKd3vbiho7OH2a4XNyhzZPvHH/vLX43mm5pZF/TO6b8L9tyvqeVfT8j51dmJFbMov1n11ualRNxbm5cG9z6Yp6XP+RLRughx6ddLadaG7bwz/EuVWSQeNJYj5v9pQ8usOS20VC7v1gqxuEc4SpXwMvIolOUT+NYYlm9qvn12ZGLfjonBHRODO8adBLOOzh7LoaOz5z+ee0HIGR/cMc6Vn9i3gzV1++xIvqmZdUHvjlwU7PlHqeXfTsr51dnJ7jaa+4qcPziXlPlKG5xLy573JaJ0Ee7Sye42bryvLKO2l14LrWgRuQnZgvKFMk47ap/dMlEs3IHoZdzMoCrhw0/7gtHO8k3Nt0ZPXN29ZWxgy9jAlrHdW53ElrGBLf1rn+vo7Pk/ByHdv/a5qwNbxga2sL9jA1vGBray9K3RE/mmZtYFHTxzUbAXFlHL6pMHz1w8eGZwLs3pXr2MLSGdzIuvrZ7jLCuXvWDXGpzrZDnFTna30dwtg3OJqG1Oi7sQbXvpNb67LcvEHNfefcmtNXeL2wvr0U245jngNMjliIUvch7aHdld+PwRB8WOjEXE3nKrWET8ECyig2dOdrfNsYikAQ5aTpsW0VxJqC84LaicV58OrlMxzWfGKsOcqdhIeGaDGVPj5f7C5TcKl/sLV/oLl/u9xJU3Cm/8dm1HZ8//+uno7Hnjt2vtYm94tS47tZgaWRdkjl4W7MVF1LL6tDl62RwdmkdEi4bM0cvmuxtbaI7xLksse9FXZWgee2v0sjl62mijeVvtBHkl3Xy/bV1GbRt3Sj6Yo6eNRU7+1mVOO0PzxIS/itfF0DxyR8G3oC6/c/Ucu4Dnj2JQO1fPoUVDFpG5dVlL2xzlvMePS36X98oi8vnsHdghS+286nQ4w/G65tJ8ZpQyviEEvBRHKvXSqJZvav52z7aj+bYQe/nRRzo6e35w6OjsefnRR8KrfLtnW76pmXVBhz+/Itj6RdS6ZuTw51cOfz40j+asPMjyR1a2sfTQPCLy8q8cfrWL/LSuGTn8+cjKNpr3qtus8JKr27Zxp+QDs51r3Em4a73tj5DgjetCbFbZO585srKNaNGQV1E5qIOewFYeHLKIdn4+srJtjkX2YXQT6xcRn2bH0yLivbKIfD4c3NjKBvVql0Wkcl55Oq4IInHdcB2IXob/y78llFEmGt6YGocXtB9b2D680P47vLB9eOF9wwvuG17Y/rvFizo6e6766ejs+d3iRcML7hte0H5sQfuxBe3DC+8bXnjf8IJ2ZkyNrAt6/4sxwTY8Tq3/PvL+F2Pvf1GcT+1PHmL5I0/OdtPsJRF7d1sXze7rF9sZeXI2zd8W9NI1vgvODvW1kuPGob5W6tpgFxYSAT2KLgnOq1w61NdKNP9xp2LgoNotovmz+/q/GFHOjWxQlrMWdT9NLCKhTWV1Vswi6pcKsGZ540fkdO2l+ZyKZYKc8Y9rLCTR8JZvav5u8LVTHQ9K9sCpjgd//5uOjs6evzsI6d//pkNV8cFTHQ9+N/havqmZdUFHzl4VbONian3msyNnrx45u38+tT91mOV/9tTs9qcOXz1yeNNT290cmr+dFWMJVn35Rt+7QmHRdj3TTl4vV49sX976zGdHti+n2Zt2eQVYm/vniwne+C72zyd3FFf51gLKux2RU1I5qKu7nmm3iGjx/iNnr1pErbPbW5/5zCL7MNqJ7csdh6+6V7N0oPZbRMwHVssianVGZ6mdV50Ox3nXBz7NZ1ZTRllLNvnkNpLlm5ovHtg9umLhmRWPnFnxyGj3wtEVnnV09vyPQ0dnT6FrmZAz6lbpXjjavXB0xSOs4sUDu/NNzawL+uDcBG+72RVJ9PCOiQ/OHXiY2le9x94aXTXbTvctdj7xFx+wK7636R4n7+Edbnk3zbU8e9Nuf48fnJv4YMdybxax2xxdNdvOuGfx8ntoed855o+QUDlvd3HgYa9RRWHZQ7tT10PFoCY+eG+T5by0iO6h9lXvTVhkH0aW4C9Qlt+32HfVMpfYu7uZvGdvsoicYU5YRCrnFadDloTrhtKfoDLKYsIo5ISQbmzLNzVfMYvnnl5y7umlji1xXi55pbvb/e/iK93d555eKuUs4aosOddrt3PFLOabmlkX9J9f/QMWyyxSHzQhX3lZy+XdTP5lUBcRvRLajFhG7jp6zkywfFPzxEdmae2qlOyfWWLiIzPf1My6oA+//h4WyywiNyGbXCwoRyjP58h1I7okOBarDN+7kA5vp+ZnZHos39R8/cTHF/rWXNi45pu+Nd9sXHPBtb7VF/rWXOhbc2Hj6m/s9OoLfasvbHTSG21za7mJ6yc+zjc1sy7oo//6HhbLLKKKafZStqB2QrqI61JQ9YplgjqVxxgy6ga2x3/5q+N79t78y+l07fievY//8lesC/q4dA0Wyywi+SUTW0gxZcUQS+xPNTnhzvBVgkbdwLZ36OPHWu5P/fnGx1ru3zv0MeuC/vzX6zAYTAejo//9AwwG08Ho0/M3YDCYDkafnr9RBgBoANQIgC5AjQDoAtQIgC5AjQDoAtQIgC5AjQDoAtQIgC5AjQDoAtQIgC7UhxqLAGSGZVm1vsBt6kaNvQBkwPj4ONQYD6ZGC4C0gRpjw6uxfWD67OsequmlAjIHaowN1Agyoq7UWCrkKFcocS+5V9OGQo3HLcuyimbK8uu75JylS1DjjKDu1EieHrVRY98la+SSNVYK0JVpjU1ZXXwignWVbBG2D1jFKWvkONTY+NSbGnOFgkGG6b3UQY3FKatvwBoJUlocEQYpc6wENTY+9afGkitCJ2EaXihsw2T5hpEjIsoVzIKdKNkt2AVlHZuuzMMR1WhaY5dsTbqL1RHn+I4ct4pTlmVZ1pTVxU+SToE+R67FS14VQY2YG2cIdahGVzfy3OjKlYmNT+QKJb5CFfOqoMaukq0fNoO54nFlWTwurlTdAvZy1LTGXBFKE2lXybKmrC58b5wB1KUay2XTECZJd3JUTZ6cSnkSylFQoz31MfgJMOh7I18gKEeSIu7izATqVI3OajRXKJVNg/wzXpgaI61Fw/Gp0VmmuktKbyasWo28FKHGmUC9qtH+tmir0dEYE2aQGsucHKtQJq9Gd3XK325JslKV1Xjcsti3SqhxxlC/avR9K6QoK9Vymbvjk8pdnE9GhH8zmtaYZfX57+K4N3X65Ls48n8+nLT3z0bLsizcU50R1JUa9QC/xQEZATXGBmoEGQE1xgbPcICMgBpjAzWCjIAaY1MsFscByAaoMR61/gAFDU6tL3Cb+lAjADMBqBEAXYAaAdAFqBEAXYAaAdAFqBEAXYAaAdAFqBEAXYAaAdCFaBEc+YBUAIBsiPW0cRpxNYJiVSkeUwZgZhHv2f8MpQIRghlPTDW6sTOkKKluhlPcC7kqBFx1Inc4L8kw3drqsHROj7lCweCzeKIG9QBAW+KqUQgR5xbgVWqryxfHyvTHWeW29/BqBIS34pqscchzADIl0dyoiJJaEuOLK4MglxVyttUWXkCZk84RAEAXEn1vDL6bYxpEvLTkdiqKDWoEM5Vk91SlKKneylPWq7NSDXg/xkoVagQNTeL/N4pRUiPcxRGmvpy/AivvX7LyBSqoEXdxQN1To9/iYHIDQAJqBEAX8DtVAHQBagRAF6BGAHQBagRAF6BGAHQBagRAF6BGAHQBagRAF6BGAHQBagRAFyqosQgAyBJ+v7rKauwFAGSDsJdrJDXWeq9LAOqAn3/+eXx8/Nq1a7du3brNUS6X2V+XH3/88c6dOzdu3IAaAcgEqBEAXYAaAdAFqBEAXYAaAdAFqBEAXQhS461btyYnJ2/dugU1AjBNKNV48+bNycnJ9evX84KEGgHIFlmNTIrPPvtsX1/f66+/7goSagQgWwQ1MimuXbt28+bN+/fvP3To0DvvvMMECTUCkC2CGicnJ7dv314sFj/88MPh4eHTp0+Pjo6eOnVqcnISagQgW5RzowzmRgAyB//hAEAXoEYAdAFqBEAXoEYAdAFqBEAXoEYAdAFqBEAXoEYAdAFqBEAXoEYAdAFqBEAXoEYAdAFqBEAXoEYAdAFqBEAXoEYAdAFqBEAXoEYAdAFqBEAXEBcHAF2QY8Zt2LBh3bp169ate/75519++eVdu3YdOnQIMeMAyBzl3Lht27adO3cWi8VPPvnkzJkzmBsBmA6CYo3v27fv6NGjX375JWKNAzBNMDVev359amrKVRDbEufYsWPYhwOA6YOpcXJy8vbt2z9yTE1N3bx5c2pqys25c+fO3bt3oUYAsoKpkanuTih3796FGgHIEKbGcrksa89VIA/UCEBWMDXKwvvpp5/YXwGoEYCsYGqUVRcE1AhAVjA13ohDbDWOAwAyI4Yaa/1xA0DjE1WNAIBpA2oEQBegRgB0AWoEQBegRgB0AWoEQBegRgB0AWoEQBegRgB0AWoEQBcq/061IvxPewAAiYn0DEcIws9eAQCJqfaJKrUaS4Uc+TDMlPwtFXK5Qik8JwjTIIpYFIAakFyNRBSmRv6yjy6YilShRtMgwzACy7rtpOgtAHFIqEY240VVY9k00podk6uxVMgZZtkMlCNECGpNVDUy7fFSTDI3eivYXKHkL+ak3SLsHdPwL3dLhVzOMHLc+jeocdklp77zrte2YTqVc4WSokGvo4LBZwGQJjHUyOTHSzHy90Z26XJKYEmFGp1ZtFTICRe8W4VrjgzTqSg1Lnnkd4LvwDQoVzCFlapXwOvIFSEmUpAB8dQoSDHa3Ohc1qJEOQGUfRrwzW58LVnAbFZzVOprXFzO+t8MWfEGfVKoZnIAUiTG90ZZilFXqmzCC5ruVFVMg82opkGVplNPjcGLR3dmdKuZUCPQjnh3cQQpxryLwynGTnJ3d5juSoUc8ZpQFvC3IS0sZdmrvsaaSVaqUCPIksz+3+i7WN0r271xYr/N3XnJKe/i+JaYwopU/IeE2LgDN8H63OHv4rjVnaVvWeUK1AiyJIUIjgo1AgDik04Ex2lzF4AGBs9wAKALUCMAugA1AqALUCMAugA1AqALUCMAugA1AqALUCMAuhBfjfhRGADZUCM1IuwFABK1ViMAwCENNQoRK8rlsvh4hBBQI3HYi/Ti6wCgH2o1KqMY2+8FPi3le8jf/1Ri2VdcEGHVYS+ihGAGQCuUz1oEqjHwQY2gCFSy0niCAmqk8aB9xAdNANCEJGpUX/tJ1BgcUANhL8DMIzM1RlqpqgJqIOwFmKmkqkY+OJvzHc8fAUO8iyMG1EgY9gJ3cUAjkJ4aAQDVATUCoAtQIwC6ADUCoAtQIwC6ADUCoAtQIwC6ADUCoAtQIwC6kLka+d+nJ/QRVAdOQb2QoRrZ6e/lwAUxzeAU1BdZqdG9CPgHRtycwGqmIe3rpiLT34tHaNz5Ne30OhaTVE5B4EijoNPRqAuyVaP8BFf4TnKmQYZheHs4hm8zHMWPBFRuXPqRejLHohdONN4UToE70mTj0kSNFd3QxM+M1FiUdj4mbvPj4KuBbfxtGkHnUhM1puVYlmoMkmLCUwA1TguZq5F/yqrCpcCuBO+xYuFpLDFqjhgdh9sPWTy0wlsVqksN+GLzmEK9pI75ByiV4Z4kM6VDUZmEavSdAm9P6FyIq6VCLmcYOekhuQSnSXjgTv2sOeuLyO20wsmVL6TQwxs4Okq8YI+ORmq0rwT+SeOQKUiMjsOVVjz3LEUYUFR3csSQPaFPPFfjmPdSLsMtEfmnPSOTTI2BpyDE1VIhpwxxFPdoyA+jmyo1uiKRH3gNOrmKoxd0eMNGx/uXEfqsVP1PKysPonIJ5J9KufrqhinoNAeFFFB/QqfkmPh5zA+eKz1Nagw+BSGummkfjShHPqI/gWoMOLwVW8tYjtrcxXE/lu0XCU5zwJGS3woXWPpqDHbMuwjUZUyDKNHcWE73FIS4mvrRUOaEqTHOyfUjHt4orSmdT4kM1Tg+Ps5OPH8dhKyRRAkYRozTzB9I8ZhKb4VWl1Ze/rcqrlSjO+ZbIEke8isx+YMpAmmegnBXUz9NUcMmVfIn5NNTfXiVJyLA3wzI8L///OnnLwtVWVV4VXu1wB8AKWpOmT8x3l2H4NsDzrcOubrbYy6nOnlcw4rPyGSO8f/ME8v4+0z4b78UToFvCCpXUzsa5bCwSeykKHVe+eQqjl7w4ZVby0nhnbIi81/G8R/MCX0E1YFTkJzsV6c8+NU4AMFAjQDMTKBGAHQBagRAF6BGAHQBagRAF6BGAHQBagRAF6BGAHQBagRAF6BGAHQBagRAF6BGAHQhthoBANkRQ43yg+QAgHSJqkYAwPQDNQKgC1AjALoANQKgC1AjALoANQKgC1AjALoQoEYxNHqGO/t5sTVd5EinjY0yOG+KUczCw3tHr1VNjykS+aLSfONNmWA1pnJlVArJzsEFnNbzkKlD7qbRZl2oMVaVGquxPjbelImmRnl4EWlINWbUMtQYkYqNR9ykoPqOEpQMJebcyIVoVwSuV2+N4G7E5waEVwpbVGPU/QCjFDYNLt67mxA/b6RlOR+g3mlRiEvP11B64rWkcsAMnxulHQWDDoLSf/7rhuhw4H6SijJ8rnLgcplYZ1B+q0L1Rth4U0nE742+3f64ZPD2gyFrMDV+NcbaHbFyYSfH3qwo9MPMqxKwzaBUoOTuoiN6IjYqOhC+UiV/+yEHIdx/+5NHmSMfqID9Lb2y0sDlMrHOoPyWunpDbbypJMrcyF0MPonm3H36ZJ+rVaPcjti1ytXgwqx108gVTN8e274hCyMLX+0EDVZxAL3hiQ6Eq5Fvzbe5r2qCCPE/xGGhQXlTxKDhxy0TfgYruhGlU2XhKh2T1xQVr/wqiLZSZZeS+ElY5t9X71WUphoj7AcYUtg0coWCwYTpKMLfu/TxnKoa1Q5EV2P4QQj3P0yNkbcxTEGN2HizArHu4nBOeZ/W/CgDNuKrXo1y10pXwwqbhvNJ5q4W1b3L67roK9UQNSodCFejOIjggxDqv3OWwnK4MQTsb+m5Jw1cLhPrDCqvq+DqomPhJ6Iax1RDVl/5iTbelImoRteb8O0HuSndtxGfsG9epLs40mUdsB9g1MLcAVW54HnuVRK2GZS2K5QHH6ZGlQMV1CivngI3RVT477mXkxzOBR4oRRm+a/fLktILbLxZDr7CK4Pf4gCgC1AjALoANQKgC1AjALoANQKgC1AjALoANQKgC1AjALoANQKgC1AjALoANQKgC1AjALoANQKgCw2ixlWNjjvSWm+slC29vb0zcKQujaPGWh/erOjt7RXUON6gFItFQY219igrhJG6NJQaa32Q04edNlmNNTzU2aFUYw39yY6ZosZaO5IyUGMN/ckOqLEugRpr6E92QI11CdRYQ3+yA2qsAi8+Dhc3xRd8pVTIpRDcViYLNfIRdBLGbwlqt7ojkK0aQyLNhRTLBqgxKV6YcH+4Mu608UXSJXU1+gOupeo41BgZqDEZ0skRwr0pAgqmSdpqzPJagxojAzUmQg5r6+a4EWQzmhbL5XLqagy41MQ9PEqFnGJDESGepS9cpxh2MRG1UaNyFKWCYhOU9IAaE6GOzOmPKZqlHKdHjWKBUug2GL7A1f5amquR/NjjUo2CW/DIH8jVAzUmInxudAPb1stKNWR5xl+jcghgZfRu4dKuOt52DebGoFEIRyBtOUKNyaj8vTHTb47T8r0x5h4ebn7I5hmJqJEaVaOoEDa+WqDGpES4p5qdHqflnmrA7iluhcCVavDmGYmoxffGgFFI2am5US6XocaqqPz/xjL/VStFpuf/jeIeHhU2q5Dv69TzXRzlKEqFXC4XsNdICkCNdQl+i1MbVzL+PwfUWJdAjbVxBWqsBqixAdBIjRkDNdYlUGMN/ckOqLEugRpr6E92zAg1FhsRqLHxKDa8GnsbF0GNtf58yJBevxpr7U6G9Da2Ghsbd6S1/mTInBk4UpcGUSMADQDUCIAu0Kfnb8BgMB2M7vnrBAwG08H+H6q7YiiNjjHRAAAAAElFTkSuQmCC" alt="" />

这样我们就可以在左侧栏看到2个action:

第二步,既然2个action都是测试同一个软件,可以重用它们的对象库respositories,操作步骤是:

先保存login这个action的对象库,后缀是“.tsr",然后选择Resources|Associate Respositories,选定刚刚保存的对象库文件,然后下面的Available Action选择login模块,右边的Associated Action选择Test_Parameters模块:aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfQAAAH3CAIAAADCIDpzAAAgAElEQVR4nO3d748c1Z3v8fNHzF8w0pqssFdahkj7JHkygSwmkEVWTIAFexNnpIm0cCMt4m5I7NGuLLhxlsAG3zCwhCFkMRg2Yu+Fu2kbg4HBQOiFtPlh7OAd7DHGaYzdwc6TK13VfVDd1dVVp06dU7/rO++XvkIzNXVOnVN16jM1Pe1BnTp16oFnf0tRFEVJKrX4bI+iKIoSVmrxuR5FURQlrNSD/+cwRVEUJazUQ//xDkVRFCWs1MO/fpeiKIoSVurnnXcpiqIoYaUe2fc+RVEUJazUo/uPUBRFURXU0uPP3/yla2anpoutm790zdLjz0eOlRju586d83TOnTtX+wmiKIpqY3193Rf3PfjQxXe6xda+Bx/6+rovRo6lfvH8B/Hyk/348ePdbnfv3r2LI91u1893bSuKoijKULNT0xd6v/n9k/9SbF3o/WZ2ajpyLPXLF47GK0h2rzvjed1hdWeCfNe2qrQe+/6fqD//68fqHkbFI2/vrCmKeuHo7NT052+9/snji2f2LJ7Zs3jm8WH5Wz7xPxh9fGaiHhy2evzBccPRB5+/9frs1HTkWOpfXzwWL8/z9u7dG0l2v/bu3eu/PqNtGKr9N1+q1Nf+JW23rPXLO/9E/fnNvyykt/03X6rGLr3znpLGnH/kRc6aoqiqa3ZqevDm8ulf7B7XY7tPPzb8+Gff/8GmzXN+/ez7P9BuidfHv9g9eHN5dmo6ciy15+CH8fI8b/SQrkt2f7PneZ6nbb7n4Id7/vUH6y69bJ365h1JO5RbB265VM3+jyw73/E1pb72cPMGSVFU62t2avr86y+d+vm9px6+99TD966OPvBr0+a54LebmzbP/c87/j6yZfXhe1dD+5/6+b1+V+dff2l2ajpyLPXES8fj5Ye7n+Z33333wsLCwsKC/4JM8Cg/p+aCX7HGe7jvby9b97cv/Pdr1Fd+pOm//Hphy3r7Q0/u/KMb1DUPN2+QFEW1vmanpj9bPnDygV0nFnedWNx14oEfjz7YdWJx1+7b79i0ee7/jUQ+3n37HScXd51Y3OX/98TirhOLP/Y//mz5wOzUdORY6slXjscrCPeJJ3fPO378uDfX9bqeN9edU3Ne1zt+/LjnebEeXtiy/rItTxx/ctcNav0P7xttv+/Wy0avfdzw9wlbnnzl4a+MXyIJNk5sX3frC08+8cN1wVef+OG60Ze+smuyh+HRJ9tqRus3HH4c2ife0N95vH3UMHHk0TkOR24aZKh56HDrf3hfeNa6SenOJ0VRTSk/3Fd237Vy/10ru+/6aPddK7vHH3x0/133/93tmzbP/d9JmzbP3f93tw93u3/camXUyg/3yLHUU8sr8fI8b2FhQd2tIuE+fGwfJbvX9bpzXc/zoj38+Aa1fvtPl1eeWn7kCnXZ1idWnlpeeeqJ7evUDd8P7xbfsvzIFUqtu/XguJ/hDpPbJ9oe3Hqtf6zw/ge3rldX/DjoczSGie1BHdy6PkjVYM+khv7Oo2EnjTDYbpp1ZJDaiU8ebtxWNzbN+aQoqkE1OzV99MF7fj273lD/cM3VmzbP/X5k0+a5f7jmanOTow/eMzs1HTmWevrVj+Lled7c3Jy6W6muUl2l7lbqbuV5nrfYDV6W8VO+O7PoeV6k+Z3Xqktueyn28SNXKKXUZX/zZLBnbMs/3ajWb//puKuX/ma9uuKf4ts/evrJ7ZeoG+8cffrT24InVn/jqKHf56RgbNGjvPrRndcqde0j48FoGoZ6No0w2C02x/HIJwepbz55uKCtfmzxM0xRVIPKD/f9V83s2zizf+Pwv/s3zuzfePn+qy7fv3HmH6+7dtPmuZOTNm2e+8frrt1/1eX7r5rZd9XMvqtm9m+8fP/Gy/dfNeOXH+6RY6lfvXYiXsnhPsr3ua431+2Own2y+dKVkeBRN/5g/NWXvrVBKTXzrb26LffcqDbs2D2xs3b7iV/t3XGJ3+3eHZcodcl/e2li42svfWuDuvKeE796Tdc2WqGdX1u6UpkbhncOfZo08vgcrQYZNJ88XNDWNKn4GaYoqhE1OzV97OH7Xtz05Vh96cVNX975jU2bNs99OBL5eOc3NukafvnFTV8+9vB9s1PTkWOpZ14/GS8/3Lszc7pw97zFcbIvzix6njfR/Cc3KXXT9vGWR69U6sqfnHzm6YVv/8Tf8vK3NyRsef3RK5W65Hsvj7vasPCzcCevn3zm9Ue//b2Xn3l64RL/KON9Tv7sezOjQwcdRtqe3H5deGyRo4860Rw0aPjytzcodd2jz0SPmDBy3awvSRikbuITYwu11Y1Ncz4pimpQzU5NH3/sgeVbNr5yy9Wv3HL18paNy7eMa9PmuSMjmzbP3XXjDZEty0GTLRuXt2xcvuVqv+Hxxx6YnZqOHEv9+xun4hWEe3dxsbu42J2Z687MeZ7nzXX9fO/OLPrJvqAWPM8Lt91xnVLXPabdsuO60aP8aIf4ln9/47Gvjh/5b9oR9PNvC18Ib/y3hS8Mv7q8bcPwC1+47qbRxlMPfG9GKaU2LDww0VZ99d74fJe3bQhvX962YTQeTcPlbRvUV6+7STPChJFH5zge+eQg9c0nxxZqq52U7nxSFNWUmp2a/uippTe+e/0b3/3mqK4ffXr9j7ZsCd7V/qMtW9747jdjW64PNbn+jflhPx89tTQ7NR05lvpfb34cL/8fMS0sLIzCfcYP9+G7ZRa97tzi4syi/7b3c+fOaTsRWq9u26C+el/tw6Aoqn01OzV96tmn3rp9W0H1Hf+DU88+NTs1HTmW+t/d0/Hy/7ZMt9tdWFiYG/Hf5+7nu/8OSM/ztM1F16vf+TP1l/fVPgyKotpXs1PTZw48d3jHbYe33/bOjtve2X7b4aB23Hp4x22Hd9x2ePut7ww/vvXwjlsPbx99vH1YQavggzMHnpudmo4cSz37n6e1lfRXIcN/HjKpreh69Tt/pv7yn2sfBkVR7au/+tO/eP7Bh84eOlhsPf/gQ3/1p38ROZZ67q1PKIqiqArqoUee+/q6Lxb+99y/vu6LDz3yXORY6j/ePkNRFEUJK/Xr3/6eoiiKElaq0+tTFEVRwioa7gMAQGsR7gAgEOEOAAIR7gAgEOEOAAIR7gAgEOEOAAIR7gAgEOEOAAIR7gAgEOEOAAKVGO6R/zd2sEW7Z55DWPYTHkkehXRiGE8hnVsevdR+qplIgSoecGQBRFZyUReoVAWOMMN8be73zCNp4+WIKDfcI/8dlHD/FLsgquwkT1eFtCpqFrWfjfKUNx6bnpt2NrKxn0UhD15FdVjXU1eBSn9ZpqRAydwh4Z6zk6IGU3ZXhSDc8yPc61JDuGt/5NHuY/NjV/hnAu31SL3eGQag/ap2MDazcB1M0jk0H8vQyjyApK5c+zFMzdCPtgftACKdmI+edFYNw0s6VvwD7SC1PRuOPrBYq0mTdW2l7Sf1hCSNWXsswz5Ju4W/GvmvZSc2J8fQm3YYLVLbk3vkGhiamLu16cdpH22r1KMnfZA6l9Q1pO0hwxkztCp87vFPLVvZnK4Ms7CcoP21MEeMzVxsssN+pjYHMrQybHG6XiXdcdpwt5mI67Vw6rz5mhjuA+NTT4Z+MixH16Nni6qkMce3pKZ56pjjrZKiytxV5nCP9GwZr6k7GHpOvTo2Z1X7aWpQZptI6tG169nmWKmtkm4T1+tlc8elXi+bKSQdXftptlNk7rz5Ghru5u2W/WTbx+YS2udIITd5fHuGMxb/anlztxmwZVik7mDYYp/Flp3bR16xEzEcy/5LhZ86wwht7jibEUb2KSncLUOJcJ8Q/xYdfBr5IHJa4xsNnSf1E9knIrKP09ENx4p8bOhHOx77s6FtZT5j8YHFB2nTT9II47tp52tuaHPGzNtturU584aGThM3TCSpKzUpdabmI0Z2Mxw9aabmo5unFu/KMK+kiQQjN3QSOVZ8ypanKCL+VUM/jcI/YoqKLKAaR9J2dZ292q9a7QMABoS7Vuu+RTdKvWevCUev5dBABOEOAAIR7gAg0Djc9/X6QRHuANBqnVGeE+4AIEco3A/3gyop3Kv/dVN5h8vfM798c2X/zra61DuwZp6WbEOqfSLNPJlOOr1hnpcV7pETVOr5av7FqPJsFMVmkJXdwEG4ZzhcNep9fGnymTFo5rCbOSp7hHul2ngrEu5OCPcMmjnsZo7KXrnhHn/TsfZtyDY/ASW1CjYmHcvQjwqJd2sYUoYmhhFmPhtB0mX4wPVsOM0r6UDaw5lnqj2cdgCRjzNfjqQBW/aTejaSek46RRmmYL4Whq5SB2M4Y9oBaA+dOubUVobBWJ40cxObfppvHO77D/eDqvJvy8Q/MHRibqVdEK79WF7R1J6ztSrqbCSt1wxHtzkh9j0bWlmq8hyW1E9RR49/tfBZJB3I/lg2d0pld26BZ775Or1hnqv9hz8NquJwt/k+GdnHMiwyx1nqdS0v3FPPhtNtZm6VdFbzh3t8FvFJZbt5io0z7bDz9GNYUU6rzv6+MB892/0VH492hIbpJI0w6VgZ5hXfM3Wa8aNnWz+tMAr3T+sMd/tOMiwjy35S27r2nK2V09lw6sdpi/nGSx2SZRpmu3nyXFPDoavsJ//yS9qtqPvLMAzXE2Vzp1R25+a8KO3S6fX9PFf73/k0qGLfChl8nwx/z4x880z9lqtCDK0y7xAfpHmJpPZTzdnQnh/DVw39GGaROp6kJvFJKePlMB8iaSJJW8zDtj+H9v0ktUrtWTvg1ClEpp969NRODOMxjNBwVrWHTu3K0Cq+g/kcmmeaesbMXTVcp9f381w9/86nfhUe7gDMIjFX40ggRqfX9yN9HO7PE+5A5QQ8KqJRCHcAEGgc7gfe+TQowh0AWq3T6/t5rg68+2lQhDsAtFqn1/fznHAHADnG4f7Cu58G1YRwr+X3SxUc0eatWjadFDeiBh0rclx+uwhk1un1/TxXL7x7Nqjaw73G8Krg0NXMLttRyhtbhp4JdyCzTq/v57l68b2zL4yKcK/yiI06CuEOyNDp9f1UVy++dzaoQsI96V95xf8lmHZjpKG5lf2/KNN2a95iM2abY0U6T52m5T7a3bSfJvWfejYM408akvZUGM5q0ixsThqAOD/cX3zvrDr43tmgCvyTvzYfxG/UeAqYWwV3frytuR/LY9mMOfVY8czSjjl1PIZ9DBu12Zras814tP3YjCe1eerJAZCk0+v7ea4Ovn82qFLDXft0ltTQ0E98h/LC3WbM2sNpWxUe7sGxtA0NY44/BVuGe6RJvB/tsWyOru053spwIAADP9zfP3vw/bPqpffPBlXBk3t8H8PG2sPdZsypxyo13FP3MczCKdwHCT82pbKZV9KXsl0CYC3r9Pp+npcV7klPXkGoGXZIeqZLet5MDfdBLJgiG+NjsxyzefrxfsK9DSZTzHzcpOkbzqRhzBlO9SAham3OiXnYSZ9qJxIeofmgwNo0DveXj3wWVOFP7gCAKnV6fT/Piw93y6c5AEDhxuH+ypHPgqr9fe4AgDw6vb6f5+qVDz4LinAHgFbr9Pp+nqvlDz4LinAHgFbr9Pp+nqtXj34WFOEOAK3W6fX9PFevHj0XFOEOAK3W6fX9PFeHjp4LinAHgFbr9Pp+nqvXjp0LinAHgFbr9Pp+nhPuACDHONxf/935oAh3AGi1Tq/v57l643fngyLcAaDVOr2+n+fqNx+eD4pwB4BW6/T6fp6rN4+fD4pwB4BW6/T6fp6rN48PgiLcAaDVOr2+n+eq+1+DoAh3AGi1Tq/v57n6z/8aBEW4A0CrdXp9P8/VWyuDoHKG+xIAIAfP8/KHu5/n6u2VPwSVP9xzDgsALHnlm5+fr+BA/lGCSeU8LZ1e389z9duP/hAU4Q6gLfLnoNnS0lIQ7hUcxVdIuPt5TrgDaCXCXWsc7r0TfwiKcAfQFoS7VqfX9/NcHT7xh6AIdwBtQbhrdXp9P8/VOyc/D4pwB9AWhLtWp9f381y9e/LzoAh3AG1BuGt1en0/z9W7q58HRbgDaAunHFSeUp5SC8q+SYvDffXzd1c/V++d+jwowh1AWziH+4JSasG+iWu4e0qzm3aj9ijD/YsIdz/P1funLgRVVLirkJwD1Sqq25KGB6ACjQr3BeX/bDCxp6c8/7A2Rxk2KSLc/TxXR05dOPLxhSOnLhwpLtwHodysJkCJaWCtaVa4LyxE8j1I9oUF00HLCHc/z9WRjy8ERbgDaIvUHBy+zh7UglJqIfypubnryzLhfLdM9kFJ4f7xhSMfX1AffHwhqGLDPf6yTHhL0ks3kS3x3ZKapB4raaPT0QE0hFW4LyRX2lN8hl+ohvLdKtkH5YS7n+fq6OkLH4yq8Cf3SFDm+SBMG8raT1OjPLVV/OgAmiA93P1Hdb+CJ/dQmZtne7eM/8wef/099SjD5kWE+9HTF46evqCOnr4YVKkvy2ifwVM/GOhyuaiYTvoJwHx0AE3QqNfch0MKXo2xzvdywv3i0dMX1bHTF4MqO9wj+zs9sGt/CEjakjnc4/ukfglALZoW7uHX2eO/X009yrCTIsL92OmLxz65qI59cjGowt8KOZh88o0/uWufyuMPzqmtkhqmHsi8UfssD6AJGhXu8d+gWuZ7KeH+ycVjn1xUv/vkYlAV/yMmEhNAZm7hvqBsXmcPy/BWyMhvULUbk47iKyTc/TyvLdx5IgaQR9P+tow2xGt5K+Qw3D88czEo/vwAgLZoWrjnPIqvkHD385xwB9BKhLsW4Q6g3Qh3rXC4//HDMxc/PPPHD8/8kXAH0BaEu1an1/fzvM53ywBAZp7nLZUsCPcKjhJMKudpGf9CtYw/+QsAZZuvRDUHCiZV5J/8PXTsnF+vHTtHuANAjQoJdz/S1b7D/aAIdwCoUSHhvq/X33e4X2S4ewCAfJoY7t8AAOTQ3HDP9p1qGwBg27ZGh3uGhtu2bZtZ9CiKotZyEe4URVECi3CnKIoSWGso3HeujF+XP3Rg4kuHzntbg48nX8Hf83Q9F0YzjAOe548z+MC99pyPzj2orW+PDrYy2vi0t+pvOe9tXfR2rnirb+vP2M7Jke9MmMKhyWGHdwh61pRhvrEv7Tkf/R2MqecMVyGtib/Mkk5ySuW4suHmh3Sd7FxJGZXhmlYxeKroWivhvnMllFmxjNu5Ml7KE8v6wESrKst0d2W+iw6Yki44YnByDo1CKoj1PeeH+ySesclwj5zJcKv4JcgSiEmn4mlv1fUU6ZpkWAxZYrGoOjD+NhwfQ+IZHk3ccE0LqwzXhcpa7Qv31P8jhybc05bU1rfH635iWde3FssI9z3nk589QzMdpoDuKFvfHqZ84hlLCvenvdXz3s6gVfzEZjvVVYa7XZ9NCPfw1QkqNdwN17SwItwrrFaGuznf4+G+9e3EZ67hIn7aW12Z3BJueMDzznuro9cr4i9fRF/wCe9/IPRTffCiysro5/2VcW87tQMLl+5lmfFgRlsOhUcSbh66r/acD3U12jOIfv/Q+pMWdJJwxmYSwn3Y26hV8E1CM+UDEyc28m0mevJDcTYx5ViIpJ6o4es5sReOnBZD0OdOu0sT3ZI200PhQWqXVuzqaBbnZKvxxJOvqf2y36od6qjCJ1k791Wvtp+V5VVbw92Q79pwT33hdc9K9A4M7lL/fhiu9dDtN3yxIrRl+FJDeP9QjaMqFH/+wOJPVRPDmAyyiQ9WJuY4nmn8EWnyVQX/iBOvjYxeYfcjfuvb3urKxGvuwcB2Gs9YeHbxjX6rjOGedPLjz++R6ducqIQnd7fFoJtF0hE1YzDPdHRp4qsl/l1weHXiizPeKvxdP3RNJxaw5bIPfdfRD9U89xp/6JFYLQ73pHx3enIPaufKxHPrxFd19/Bw+8pETmlf0NA84MSej+JhZ/PkHu55+D3gQOhA8eYr0UNM/O508l7d+rZ+1sHAks6Y/mWZyfOsCffg3k4O94mTH2qlme9kUludqNSXZSwWQ9DE6ojaLfGZHhj/xDDxupnh2Vl3nhNbTb4ip72mbsteN9ToSU6eu/k+peyr3eGuzfcMr7n7ayv4LaLT/RxevvqXEeJRVVy4J/1E4v/8G334Coe7/5weGmc8TeLJNTGwhDNmDvdhq/AVCX4ej/04YhXu/usJkWPFwj39RBUd7vaXZrzFJdz1Syt0Vg8d0CxOTavJa6G9pm7L3ibck+euPWlUhmp3uGsbZni3zHDZhW7OiS9N3jOGn08PxR6gwqE5/um1oHAP/yTr37TaR+zxBEM3jz+Y8f6GVxjC93a4k4QzlhLuo1Z7zo+HOvGKeegQ0fOZfPKjYRp/WSb1RLmHe8rLMmlH1IzBYqYzoZjWLK3I1YktTk0ri2vqtuwtwt00d6qganG4JzV0ep97eBH77/NLuZ+Nv1k6pHtZJvy6bcHhbvytXfzJMfwr0/AYgtf9I/Ma//Jt8uXjcIfxM5YS7qH3U0ZfrF8Z75B0PpN+oRqeyMyi2y9UwynjJczFfjGEr6nlEcdb7GYaJKZmaU1+/w6/QLR6PqHV5MSDazoW+pV1eKaJyz5hqDsnT7Jh7lQh1dZwNzSs8V+omt5r2IQyvs/dcoLl/cqr6WePSiguXDOrleFublhxuI+faPL9Y8hqyvAvVFPL8DoytdaqXct+bVb7wj0Vf1uGoiiKcKcoihJYhDtFUZTAItwpiqIEVqPDfSmTcv+/VQDQEs0Ndw8AkAPhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIBDhDgACEe4AIFATw73ucwIArdfEcAcA1ItwBwCBCHcAEIhwBwCBCHcAEIhwBwCBCHcAEIhwBwCBCHcAEIhwBwCBCHcAEKiecFdK5WylRsz7R3awaWVz9LJbYe0ob4UU2LPNvZat26wjQro2hXuGfrQ7lLcQWaxwVe+asT96/nDn7qhYbeFeyJWuONyzHQ4wKOpeyHz0Qvbk7migGsLdv8bBlQ6/VBJeIpHlol092i2pr96ktkods7bz+LGSxhxvoh0zN4N48XUVv/qGRRLpynD7aDcm3R3mnm1mkTQe7o4qFR/uS8n8HbQLOvWDQWz1xLdk60e7j/ZA5jEXNcLUVWs4wwLk/zPWzWGYpr+DYV3ZbMm/zrPdQdrxcHcULue9UEq4m//2fPx7r813/vgOSVviPQ/SFnTqs0DSmG3Go/00dYSGwVT3PwuoXP4F3SgZ7oWB7uon3QgZVqP5njKsc+6OijU33A072Fwwm1COb7FfHIZOLMdc6vK1H5gwIsPdsIPT1XdaPPGN2e4Fy3DPMB6bEa7lu6N94R759m6+eOHHgfijQfx5IX8r1zHHW2XeIT5m8cs3bk2Fu3Zdxa++YcXGe7NZe+auDHeHdkFyd5SkfeEOGAhbPMKmgypJCHelk/noaDVhaci9gMwkhDsQELZ4hE0HVSLcIYqwxSNsOqgS4Q5RhC0eYdNBlQh3iCJs8QibDqpEuEMUYYtH2HRQJcIdoghbPMKmgyoR7hBF2OIRNh1UiXCHKMIWj7DpoEqEO0QRtniETQdVEhLuhf2JTDSV5ZKw37MVMkyn7guF0lV2LzQl3Och1+rqKuFu36Tuy4USVXkvNCjc8/79YzQV4e7UZH5+fmbRo0QW4Q5RCHenJoS74FrT4R78MbwMIZKtFcpGuDs1CcI9osCIKalbKrXWdLj7iGlJCHenJuFwj/zXvlL3D3Zw7TlbVXOU5hfhTriLQrg7NYm8LONlisXUVh7hXkcR7ppwj79WE/4fGsR3iHwVNSLcnZqkhrsv8ml4Y+TTpLSN7xPvJOlwSYc2j9DpWEmdt7oI92i4B58aPrBphVoQ7k5NzOHuxZ64PV32aTead9D2bD56/L9JA7OZRdI+kopwt4pp7bN8aitUj3B3apIa7oHIRqdk1O4Q6Tl1n/h/DSM0z8JwrNoTmXDPPqY8T+5OrVCLkhZ0XdOZn5+3X9j20wmaWD65m/PasFvSDp7x0Vv7pfh/DTFteXSboba31nS4R/7vwMEdlfqSuuFTXnmvV3nh7rTMCuGvVfudXQcZCfdAJOzCG8PiuyXFpfarWuZ94uFuHrZ2H/M0k2bRxlrT4W7J8FI7moZwd+2/9gyiSirC3QpvhmkLwt21/2IDJa72jFuzRbhDFMLdtf96rxfKQ7hDFMLdtf96rxfKQ7hDFMLdtf96rxfKQ7hDlKaFu1IqW8MB4Y58CHeI0rRwH+TId8IdeRDuEKWB4T7Imu+EO/Ig3CFKM8N9kCnfCXfkQbhDlMaG+8A93wl35EG4Q5TGhjtP7qgY4Q5RmhnuvOaO6hHuEKWB4c67ZVALwh2iNC3ceZ876kK4Q5SmhXsehDvyINwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhSnnhvlQHwh2ZEUgYcTkAAAk6SURBVO4QpaQFPV8f+4VtP52gCfeCYIQ7RKlyQTcK9wIiCHeIQrg7NeFeEIxwhyiEu1MT7gXBCHeIQrg7NeFeEIxwhyiEu1MT7gXBCHeIQrg7NeFeEIxwhyjlvc+9FrwVEpkR7hCFf6Hq2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhCuHu2n+91wvlIdwhSkPCXSmVuiUV4Y48CHeI0pBwHxSR74Q78iDcIUpzwn2QO98Jd+RBuEOURoX7IF++E+7Ig3CHKE0L90GOfCfckQfhDlGaFu48uaMuhDtEaVS485o7akS4Q5TmhDvvlkG9CHeI0pBw533uqB3hDlEaEu6FINyRB+EOUQh31/7rvV4oD+EOUQh31/7rvV4oD+EOUQh31/7rvV4oD+EOUQh31/7rvV4oD+EOUQh31/7rvV4oD+EOUQh31/7rvV4oD+EOUQh31/7rvV4oD+EOUcoL96U6EO7IjHCHKCUt6Pn62C9s++kETbgXBCPcIUqVC7pRuBcQQbhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0Qh3J2acC8IRrhDFMLdqQn3gmCEO0QpaUHXNR3+B9nIjHCHKOWFu9MyK4S/Vu13dh0k94JshDtEIdxd+6/3eqE8hDtEIdxd+6/3eqE8hDtEIdxd+6/3eqE8hDtEIdxd+6/3eqE8hDtEIdxd+6/3eqE8hDtEaXK4K6Wc9ifckQfhDlEaG+6uyT4g3JEP4Q5RmhnuGZJ9QLgjH8IdojQw3LMl+4BwRz6EO0RpWrhnTvYB4Y58CHeI0rRwH/DkjpoQ7hClgeE+4DV31IFwhyjNDPcB75ZB5Qh3iNLYcB/wPndUi3CHKE0Od1eEO/Ig3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CFKeeG+VAfCHZkR7hClpAU9Xx/7hW0/naAJ94JghDtEqXJBNwr3AiIId4hCuDs14V4QjHCHKIS7UxPuBcEId4hCuDs14V4QjHCHKIS7UxPuBcEId4hCuDs14V4QjHCHKOW9z70WvBUSmRHuEIV/oeraf73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CEK4e7af73XC+Uh3CFKA8NdKZW6RYtwRx6EO0RpWrhnTvYB4Y58CHeI0qhwz5PsA8Id+RDuEKU54Z4z2QeEO/Ih3CFKQ8I9f7IPCHfkQ7hDlIaE+4And9RtLYb7KkQrY0FnW/rNf8297muFcq2tcK/ruyiqVPjisd8zosnvlqn5IqESJS2eiEaEO+Djfe6Aj3CHKPwLVcBHuEMUwh3wEe4QhXAHfIQ7RCHcAR/hDlEId8BHuEMUwh3wEe4QhXAHfIQ7RCHcAR/hDlEId8BHuEMU13BfqgPhjgoQ7hDFafHM16eM6QBhhDtEEbZ4hE0HVSLcIYqwxSNsOqgS4Q5RhC0eYdNBlQh3iCJs8QibDqpEuEMUYYtH2HRQJcIdoghbPMKmgyoR7hBF2OIRNh1UiXCHKMIWj7DpoEqEO0QRtniETQdVItwhirDFI2w6qBLhDlGELR5h00GVCHeIImzxCJsOqkS4QxRhi0fYdFAlwh2iCFs8wqaDKhHuEEXY4hE2HVSJcIcowhaPsOmgSoQ7RBG2eIRNB1Ui3CGKsMUjbDqoEuEOUYQtHmHTQZUId4gibPEImw6qRLhDFGGLR9h0UCXCHaIIWzzCpoMqEe4QRdjiETYdVKmh4Q5kJikN6z6XaLfGhbsH5JNnQTdK3ScSrZdn+RUf7gCA2hHuACAQ4Q4AAhHuACAQ4Q4AAhHuACAQ4Q4AAhHuACAQ4Q4AAhHuACAQ4Q4AAhHuACBQKeFe9x9TA4DWa2K41/2X1ACgxZaK+NvXvCwDAAIR7gAgEOEOAAIR7gAgEOEOAAIR7gAgEOEOAAIR7gAgEOEOAAIR7gAgEOEOAAIR7gAgEOEOAAIR7muIgpH9maz7jwY22vz8PKcxP/vTmIRwX0OUUnWv2Iaan593DffyLlOrLS0tOYV7qYNpL6fTmIRwX0P8cK97FI3j30iEeyEI90IQ7nBDuGsR7gUi3AtBuMMN4a5FuBeIcC8E4Q43hLsW4V4gwr0QhDvcEO5ahHuBCPdCEO5wQ7hrEe4FItwLQbjDTe3hHnlHefhT13eaF6hp4Z7trff23RbYZ1xjwz2+8JL2qWsdhhHucFNvuIfvmfBtFv9qxRoV7tqzVFL/ZWhsuA+sFxvhjvZpbLjXezs1Ntzb2D/hXgjCHW6aGe6130utCHfty1mRneMbtfsUPeQJDQ9311NU0ktkqQh3uGlmuA/qflZqfrgbXsVy+iCp/wI1PNxTPxjETlEtrxwS7nBDuGs1P9wHut9FJ30Qb0K4+7QnLfUUEe5ogcaG+6DWfG9suGd+PE/akrSxQK0Ld8NuNjuXhHCHm3rDfcBbIe1oX+RVOoPJ86Z9CI3sqe28QI0N9/iJCn9sOEVlnzEtwh1uag/3ZmpauLdaY8M9s1qeOQh3uCHctQj3AgkL91oe2weEO1wR7lqEe4GEhXtdCHe4Idy1CPcCEe6FINzhhnDXItwLRLgXgnCHG8Jdi3AvEOFeCMIdbgh3LcK9QIR7IQh3uPHDfQkxhHtRlgj3IjidxiSE+xqilJpHAtdwr/v7UXPNu4R73YNtLvvTmIRwX0O0/8oRAfszWfd3oqbjNBYi010+RrgDgECEOwAIRLgDgECEOwAIRLgDgECEOwAIRLgDgECEOwAIRLgDgECEOwAIRLgDgEDjcO/0+hRFUZSwItwpiqIEFuFOURQlsAh3iqIogfX/AQBWyA67lPzSAAAAAElFTkSuQmCC" alt="" />

于是,在测试参数的模块中就可以直接使用login的对象库了。

第三步,因为测试参数是一个繁杂的过程,有很多种组合方式,而且每个参数输入框都要求输入一遍,但是好在参数输入框的规则都是一样的,比如不能输入符号,字母,负数,小数,空格等等,除此之外还有范围限制,于是我就采用数据驱动测试的方法来做这个脚本。先写好输入参数的过程:

Dialog("App(1.0.1.0)").WinEdit("MINS").Set ”1“
Dialog("App(1.0.1.0)").WinEdit("MINX").Set ”1“
Dialog("App(1.0.1.0)").WinEdit("MAXS").Set ”2“
Dialog("App(1.0.1.0)").WinEdit("MAXX").Set ”2“
Dialog("App(1.0.1.0)").WinEdit("IR").Set ”1“
Dialog("App(1.0.1.0)").WinEdit("OR").Set ”2“

然后根据数据驱动测试的步骤设置参数根据table中的值来输入,详情参见我博客《QTP:数据驱动测试》,Expert View的显示如下:

Dialog("App(1.0.1.0)").WinEdit("MINS").Set DataTable("minS", dtLocalSheet)
Dialog("App(1.0.1.0)").WinEdit("MINX").Set DataTable("minX", dtLocalSheet)
Dialog("App(1.0.1.0)").WinEdit("MAXS").Set DataTable("maxS", dtLocalSheet)
Dialog("App(1.0.1.0)").WinEdit("MAXX").Set DataTable("maxX", dtLocalSheet)
Dialog("App(1.0.1.0)").WinEdit("IR").Set DataTable("IR", dtLocalSheet)
Dialog("App(1.0.1.0)").WinEdit("OR").Set DataTable("OR", dtLocalSheet)
Dialog("App(1.0.1.0)").WinButton("应用参数").Click    ' 点击开始应用参数

我设置了2种参数范围边界的数据,9种服务端会拒绝应用的参数组合,30种客户端限制的参数类型组合。

第四步,对测试结果进行判断并显示在QTP生成的测试报告中:

开始我是这么写的:

If   Dialog("App(1.0.1.0)").Dialog("提示").Exist(3) Then
Dialog("App(1.0.1.0)").Dialog("提示").WinButton("应用参数成功-确定").Click ' 应用成功
reporter.ReportEvent micDone,"yes","前2个:可以应用成功"
else
reporter.ReportEvent micFail, "yes"," 前2个:服务端拒绝应用"
End If If Dialog("App(1.0.1.0)").Dialog("错误").Exist(3) Then
Dialog("App(1.0.1.0)").Dialog("错误").WinButton("服务器不支持该参数-确定").Click
reporter.ReportEvent micDone,"server no","中间9个:服务端拒绝应用"
else
reporter.ReportEvent micFail,"server no", "中间9个:服务端居然应用了"
End If If Dialog("App(1.0.1.0)").Dialog("警告").Exist(3) Then
Dialog("App(1.0.1.0)").Dialog("警告").WinButton("客户端不支持该参数-确定").Click
reporter.ReportEvent micDone,"client no","后30个:DTC拒绝应用"
else
reporter.ReportEvent micFail,"client no", "后30个:DTC居然应用了"
End If

运行之后发现,每一行参数的结果都有2个fail,因为我设置的三个主if是并列关系!符合其中一种情况之后,另外2种情况都会失败。

于是,我再写成这样的:

If   Dialog("App(1.0.1.0)").Dialog("提示").Exist(3) Then
Dialog("App(1.0.1.0)").Dialog("提示").WinButton("应用参数成功-确定").Click ' 应用成功
reporter.ReportEvent micDone,"yes","前2个:可以应用成功" elseif Dialog("App(1.0.1.0)").Dialog("错误").Exist(3) Then
Dialog("App(1.0.1.0)").Dialog("错误").WinButton("服务器不支持该参数-确定").Click
reporter.ReportEvent micDone,"server no","中间9个:服务端拒绝应用" elseif Dialog("App(1.0.1.0)").Dialog("警告").Exist(3) Then
Dialog("App(1.0.1.0)").Dialog("警告").WinButton("客户端不支持该参数-确定").Click
reporter.ReportEvent micDone,"client no","后30个:客户端拒绝应用" else
reporter.ReportEvent micFail, "fail"," 结果跟预期不一致"
End If

现在如果全部测试通过,不会出现fail的情况,但是需要在测试报告中一层层点开,查看对于每个测试数据行的测试结果是不是符合以下描述:

1.前2个:可以应用成功

2.中间9个:服务端拒绝应用

3.后30个:客户端拒绝应用

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA5YAAAGUCAIAAADBPioLAAAgAElEQVR4nO29fbAc1Xmgf7b2j2xVtuzdTWWdbJUT/EfsRFipNVJlQ2e38ltxbQwxqly8dzey7OBIpm1v7GS9VSt/gSTkARN8BQ2YmAsIXYnExiPh2AYGhIx0JeMBm+HaGIEMoysZgbAtrCsJMAgjOL8/+uv06dMfM7enp2fmeeqtUU/P6XNOT987eu47b3eL337rf166dOk111zz7LPP3njXjwiCIAiCIAii4iF++63/edmyZc8+++zUXY8SBEEQBEEQRPVDLF26dMeOHVN3P0oQBEEQBEEQAxFi6dKlzzzzzE2NHxMEQRAEQRDEQIRYunTpK6+8cvM9jxEEQRAEQRDEQIRYunSplHLTvfsIgiAIgiAIYiDCU9hbd+wjCIIgCIIgiIEIT2E33/cEQRAEQRAEQQxEeAq7Zed+Y/zz7sc6iqR+CIIgCIIgCKKo6EBhv60wFeWKK65otVooLEEQBEEQBFFCeAq79Ts/McZX7z0QxLe//W1p4oorrnAfW61WUj8EQRAEQRAEUVR4CvtPu540xvR9c0HMzc1JKcWUEFMirrDuQlI/RO/j5mXif/2//k+j4sG7RBAEQRDDEJ7C/vPup4xx9OhRV0/dhbi/uuYaYOpk54fOFOJ9tyQN0WmseZ/QKaJzr9v33dKj/g3vScCZn7+6gD5vWSb+15oOt7r6b9+l7esf/O1O7x3oZFa9edOq8i4RBEEQBFG18BT2azMHjCGlFC0hWkL117m5uaAoVnVZ27YNnfzzJW8/86y3i7/6dMIQ3camc7rp8/6/PlOc8w+Glz79Pm19d/13M41Pv0+I920q7g1J3MeM+OdLwsP0D38lzrzkmj4flEq+SwRBEARBVCA8hb19z5wxvORrSxjzrwFuM9u24z1c+8mz3v7JXZ+5QIxdZR6i29g0JlZ8puOtdl30TvNMYjPsrv+upnHVCnHBpuLekMR9TI9rP3lWOI2rVoh3Xnptnw9KFd8lgiAIgiCqEJ7Cfv27c8a448EngxIC11a/ncDRo0dt2471sOuid5510e1zX//SCvHOS68NV4qxL20a878iHvtS+npjbBoTKz6rr/F4+9/tclde+3dn+etWfFZpoEzGi88u14bL0/+mMXHWRV+69O3BbL+0ItogfU/D5WDCOfZi7uu3X/r2YG7hsjthfR/1bdPez7Muut1/Gjle+aPYg1LBd4kgCIIgiEqEp7DbHjhkjH+Zaf/LTNu12FarZcy/Bti2rfcwuUK8c+31Dxza9sDmd4uzPny7u37mw+8UQqz4XNDGW05ab4zN7468qvf/7slD225f+3a9B/+lWIefW66tz9H/A5vfLYS3g5MrhBBi+eZtD6jjpu+pS9Bt7r1Q14TLwYSVfTS8AwkRHinT07xR7EGp3rtEEARBEEQ1wlPY7d/7qTG007m0QliVubk527a1zT+/XLzj7/fElvf8zTvFuzcGzYKnSes3v9v3mL/5evDq5neLD3w+GGvjB0SUd/z9Hn9DdSttiMhUo+tz9h90blzO3tPPLxdi+ebO9uLra98RzC1cDiasDhp/B4wRe1s2fkC8c+31ejPjgejiTct5UKr2LhEEQRAEUZXwFPYbDz5tDCllSyxpTU1JKVtTUy2xJJ5/nfOZmJiIbj79Hs01xAcuefDpbzy4Z9Vi8Z6rg2bB06T1xph+j9fb09948OlvXP0BsXjdDeaWe1YtFkIsWVVP6/OSv9TW5+l/+j1et0nLefZ0+j3CX865F/V17wjmFi4HE47vo/oOmELtMPv9TIliD0rF3iWCIAiCICoTnsJ+86HDxgjMNXhMKodttVoTExORza9ZKcTKteGaLe8R4j3XHP7mQ3tXLxZifIu7/iufWuI3S1pvjC3vMXd++JsPHV47vnLtQ4e/uX39am/N3tWLw6GDZmqsHdfW5+j/oS3vEUtWbw8axJfT9jTo7SufWiIWr/9K/r3Yvv4d/lhKn8GElc4N74B539/xqb36sfOm1FEUe1Cq9S4RBEEQBFGd8BT2W99/1hheFazir0H+NUi+tlqtVqs1MzMzMTGhbrtuXIjx20xrHvjIYnHu+Eo/Nbtyndcgab0xbjtXa3DH+j/0tzzXUUZ08Wdy46eWCCHE4vU3RjtcNx5ulbv/284VSz5yR8py6p6Gwz3wkcX+DDvaCyH+cHzlH3rdhhNW9zG+rR53rP/DcOZ+OCvjb1GOKPagVOldIgiCIAiiSuEp7LcfPmKM/FlYV2GT+onG9z6yWJx7bf71ZcT6C3sxdD/3aEFx7QfF4vVTfZ8GQRAEQRCEKTyFvbP1nDGMtbBq8tXNv7osW7YsqZ9ofO/iPxbvvTb/+jJi/YVCCCEu/KdCu+3nHpnin94brU02zs17K/74spv6P2GCIAiCIAhDeAp71yPPGSN+RYKZmRnbticmJtxHl2U+Sf1E43sX/7F473X51w9uDN8eEQRBEARB9D88hb179mcEQRAEQRAEMRDhKew9P/w5QRAEQRAEQQxEeAp7749+QRAEQRAEQRADEZ7C7nj0KEEQBEEQBEEMRAghhFFhJ+85PHnP4Sd/KQmCqEhMzTyXEjfN/KzYuHlPkXHL3p8XG7d+t8jY/MAvCozp7xUcW753tMDY2iw4/unB5wuMf36oyPjq9wuOr/3glwXG7UVH/eFjBca2VpGx/ZH5YuOO2SLjGz88Xmx8s9D41o9OFBvffrTIuPPHRcZdj53ME2kK2/f/sAmC0AKFRWFRWBQWhUVhUdg0hd33izf6/r81QRBa/Phnr6OwKCwKi8KisCgsCpuosD967vW+/29NEIQWs0dOo7AoLAqLwqKwKCwKm6iws0dO9/1/a4IgtHj4GRQWhUVhUVgUFoVFYZMV9vuHXwv+1zzr3A+ede4H+/6fdzmxT8qZAzP1Q/V1fswcmPnxwVc76mTH9u3bNmzYunrV1tWrtm3YsGP79sxNbGdneoOtW7fWarVPfvKTK1asOP/885cvX7527dqOZtXHHjL3ro/Ru7n1oucHn34NhUVhUVgUFoVFYVHYRIV98OnX9j//hhuuwkop3ac99YlWq7UzmVar1dPRZw7MrNtdn9hdX7RuwovNExO76xO76zMHZvL0cPM5Y1f++9+68t//1j+euXj6T6zpP7H+8czFX3zzv/vim//dzeeMpeuOlImvXn/99VdcccXevXtPnjwppZw/dmz7tvqf//mfr1ixIueu9beH9L3rb/RuboX3vP/5Nx449GsUFoVFYVFYFBaFRWETFfa7B3/92M9fD0JKKaV0lwO13f/8G61WaypKq9VSG3QaO3fulLIlZUu+3pSv7pQvbZcnt8jnHfncZVNTUzt37oxvMj4+vmrVqjVr1nxpcnLzrZvq9frmWzd96UuTa9asWbVq1fj4+FiUpKFnDsxM7K5PXDpR312XCvXd9YnNExO76+t219Mnf9Xv/O4/nrn4B2vWty69onXpFT9Ys771t59v/fX/bf31/3147KLr3/LWq37nd5O2dXXH+NJNN900PT199OhRf0an5euvyddfOfz0T5csWbJmzZrMdzXs4dXn5KnDrcXj8uWn5K/2d93D8svaHfWQsnd9j07nNmZigT1feeWVtm1PT0/X62k/Y4/9/PWZA6+isCgsCovCorAoLAqbqLAzB1794XOnjaGq7dTUlGecsiVP75Wv3OVarNomf7gpWClb9SjyucvkTz+R1PP4+PiDDz34+OOPH376p8eOzZ86dUpKeerUqfn5+cNP//Txxx9/6KEHd+7c+a1vfbter4+NjRmH9vx180QgrvLQhDw0IQ/V5aG6lHLd7vrE5np9dz1p8hvf+nvTf2K1Lp90/VVKGfirlLJ1gf3w2EWb3/IHV/3O7xo3d3XH+NKnPvWpXbt2af4qX39JvnZ8862bFi9enPnGhj28dry1eNwN+fJT3fUgf310+WVteepw/h5S9k6Lz15/e3c/PPGYnp7O0yz/3DqNPD27P5Mqtm0nNf7hc6fvb6OwKCwKi8KisCgsCpussN956tTDz5x2wy0kCJ7OHgkjVNjTe+Urd8qTW+Xz12h52Z07d6qbpMTOnTvlG9+Xr+2Wr9wlX/iqPH6T/MVV8plPu/6atFWr1Vq1apWrsPPzqsIe8xT2QU9hx8bGWq1WvId9rqFeOhHK626xb7PYt1nI3ULuFq7Fuo47c2Am3sOdN9208a2/17p80lVYN/8qpVT9tfVfP9ha+j8n/8N/vPOmm+I9uLpj3MEVK1acOHFcytNSnpZvhP4qf330F0eefNOb3pT5xgY9BP7qWWznPcjXX5KnTy6/rO2mY3P2kLJ3anziCzde8/Unc/60ZMb09PT09HRms5xzC8KYhe2654mJibGxsSuvvHL2yOmpqamU3maPnH74mdM7fnIKhUVhUVgUFoVFYVHYRIW9d/8rDz79mhtBLaz79PuHw/AU9vRe+cpd8uRW+bwj979fi6mpKXWTpPBSsK/t1lOwP/2EbP/11NSUm69K2nbNmjVP7P7Y/CMfnn/kw3L/+92FJ3Z/7P5vXn7/Ny//2m1Trr8aN3dTsPXddddf920W+3Z83c157jtU37db7Nst5KH6zIGZic31dbvr8R62rl518zljqr+6KVjNX1uLxze/5Q+2rl4V78HVnfj6ejJjY2Py5YO/8Ru/kfnenn/++b7+npKvv9JaPO4asDx1uLsell/W7qiHpL1Tw/XXv7zyeJ6fljwx7bPwua3+SjcTyNOz66xzc3PfP/za/Py8bdtjY2NJvzIPPv1a44lXUFgUFoVFYVFYFBaFTVTYu594Zc/cq0G4PucuP3Do10FMTU0F/jqVA3VbNTx/DYpff3mdfO4yN/8a+OsDh349NjaW0sOXJifl84585U4pW/KVO+Uvrws02vXXpG3XHfJLCFxhdf11d92LQ/V9u8UTuz8WJGLjPXhZ2Euv+NkPH5RSnj79hrvQusCWUgb+2nrHBW4WNt6Dqzvx9fV6pDA3YH5+fmxs7NiR2Te96U1J+xXEsmXL5o8dla+fcjW0tXjcy+O+fLDTHpZf1lYjZw9JexfE3274yo13Pvc/r3ltxeTRzMnkjGmFLub2tv9x47suvvO/r5ldfll7xeTR1V957YFDvzYeC5cu9lqLubk5V2Hdn/Z47Jl79dv7XkZhUVgUFoVFYVFYFDZRYb/12Mv3t181xsyBMKamprz86/73R+pi3fOxTu+Vr+6Ur9zpiunU1JS6bRDxc8LizBx41c07GnsI+tl86yb5yl2ewj5/jfzpJwJ/Tdlw3e76onWuwk7s2yw8f91clxdN7HPX7xb1zULK0+7FCoyduLWwUsovbvvixdddfPr0G60LbDcFK6V0/dWthTVu7upOfL2rsK1Wa2JiotVqSSmvvPLKK6+80lXY2zZf90d/9Ecpu+bG+eeff8cddfn6S241bWvxuFeN8Kv9XfQQ+mvuHpL2zo3AX8drhzRFDiK9/+kcdDq3Ny+79Pcv/PKZF93+Xz6x57xL97kWK6UUwhDGHtL3WovAX23bnp+fN7a5v/3qv/wYhUVhUVgUFoVFYVHYZIX9xqO/2vGTU264hQTB0/ueDGNqasqtH5iampqbm4vJ613ype3yhdvk8Ztcj1S3VTt56aVT6VGv16+88sqxsTFjD0G0Wq16va4q7Pj4eNK4QUzEFXZdfd9FwaldIW7LpH6u+p3fDRQ2UkKweLy1ePz6t7x18j/8x6RtXd2Jr3cVdmJiInicn5+fn59vteTY2NiZZy761Kc+lb539z15au3atWNjY7848qS7F63F4+45YT/74YPd9bD8snZHPSTt3X1PnnL99f1X/Wq8dui/r5l918V3/sFf3fqW865887JL1UjvP4/CTk9PdzS3f/0n//vNyy59y3lX/sFf3eqmY+978lRKFrajvTY09v11bm4uqc2On5za9qNfobAoLAqLwqKwKCwKm6iw9R++dPcTr7gR1MK6TxtKTE1NBQWvUrbkG9+Xp/fK13bLU/fIl7Z7p2T98jr5i6vGxsYa0W3VTlKuBbtz50437zg9PZ3SSRB+LvZO+fw1q1atarVamZusC65FcGjCO3lrd33r6lVSnp7YXHfDdVz3qlvxHo4cORKozCW3XvLB2geDp/t2fL31jgta77jgq//m97euXpU0B1d34uu1LOz8/Lz7bszNzY2NjY2Pj2funRsf+tCHzj777K/dNnXsyKx8+aljR2Zv23zdmWcuKqeHpL1zw62C/S+f2HPmRbf//oVffvOyS//1n/xvLdL7z+OvXcxt165d7sLb/seNOd+l/Huthns0JyYm5ubmUprd/cQrt8++hMKisCgsCovCorAobKLCfu2Rl7712MtBuDamrnHDVVgvBft605PXl78pX/iqPHGrPPYV+fw18rnL3BRsfPOwkyivnX7txInjh5/+6ZRcMiWXLLHF2rVr//7//J+xsbGkTtTwFdZZtWpVnvb1Q/WJzfWZAzNu2avcLaSsy9dfk1IGCjtzYEZKObF54rPX3x7vwU2+fnHbFy+59RJXYScunbjg7y8452/OOX36jT3/6b+1fu/cPf/pv132r/7Vju3bjXNwdccwt2gtrJt/nZubc7Ow33rs5bPPPnv58uV5dnPNmjVLliz5rd/6rd/8zd9805ve5GZPy+khae/c2LVr199u+Mpnrrvrty+Y+v0Lv5xnJnlC9deu5xYP4xUJFthzq9WybXtqaiqz5VdbKCwKi8KisCgsCovCJivsbQ+/uO1Hv8qMQGHla7vlqzvly9/0zsdy5fXnl8tnPi2f+fTY2FhGJ1FOnTp19OjR9oH2lFzSkmKJLWzb/tCHPpTeTxBeRezz16xatSpPe++isLvrbtJ032axb7eQuydchV20bkK12JkDM/EepJQXX3fxxddd7MrrxKUT5/zNOef8zTlnj58tpdz41t/76r/5/R3/9o93/Ns//sczF+/Yvj3eg6s78fWuwrpJ6Onp6SAL22q13Hfj3HPP/fCHPzw+Pp5nT41RQg9Je6fG311+02euu+vN73W6noYWgb+mN8szt+4if89zc3PbfvSrVquV2XLrD15EYVFYFBaFRWFRWBQ2UWGnv//C1x55yQ23kCB4qoZ7rtXc3JxX9npyqzx+k3zekb+4KrikgJuCNW7uhns6l5qCPXny5JEjRx5//PEltnDDvXxmvV5P6ScItZAgT/uvPfJSfXfdvWCWa7H1zRP1dUJKuWjdxMyBGdVijZurhQRu/jV4euTIkR3bt29dvcoVWbecIN6DqzuGidXrUsrp6WlXZFst2Wq1Wi05NdUaGxtz27z3ve91DTLnzsaj1z0k7Z0Wf3/FLZ+9/vZdu3Z1PQ01XH/NbJZzbkEYs7AL7Nm9Iqxt25ktNz/0AgqLwqKwKCwKi8KisIkKe0vz5G0Pv+hGUAvrPt36gzCCi7Gno25iDLccNv2iBHn6cUMtJMi5ydYfvOhWxK7b7WVbVTSLTelESunWD0gptZdckd26etWO7dvjG7q6E19fr9eDzOv09HSr1QoW1DckMMj8+6tFT3tI2rt4/N3lN3U9AS2mp6fzNMs/t04jf8/uj3fmhG97+MWbmydRWBQWhUVhUVgUFoVNVNgbHzi5+aEXgnBNzl3e9GDx4QpZOvV6PWdvm2/dNDk5uWbNmlWrVnU0DffqWhObJ9y6Ai82T2gWm9LD6dNvBPUD8Vd37dq1a9cu44au7sTXuwo7Nzfn1r8GKVg3C6u2fO9737t8+fKFHIXe9ZC0d1WITudm/OEspOfM2PzQCzc+gMKisCgsCovCorAobLLC3rD3xM3Nk8a48YFhjpkDM5+9/vaJSycWXTSx6KKJResmpqengypY12JTNg8qCo4cOdLp0FLK+Mp0re/727XAvatI9G5uxfZ8c/Pkl/ecQGFRWBQWhUVhUVgUNlFhr505fsPeE8b48h6CIPoQN+w9ce3McRQWhUVhUVgUFoVFYRMV9upd89fOHDfG1bvmCYIoP66dOb7x/nkUFoVFYVFYFBaFRWE9hb3v0aNq7Hj06FU75zfeb46rdhIE0Ydwf/tQWBQWhUVhUVgUFoVNVNjJew7/w85jBEFUKpL8FYVFYVFYFBaFRWFHUmF/fFQNV2En7zn8/61cQxBERSLFX1FYFBaFRWFRWBQWhQ0VtqjYWGhcfW/Bcc2OZwoM576C47qdzxYY1xcaX/7OkWLjhvuLjH/c9VyxcePuIiNdSTsNFBaFRWFRWBQWhUVhUVgUFoVFYVFYFBaFRWFRWBR2tBUWu8VusVvsFrvFbrFb7Ba7xW6LsltPYXf++KgaKCwKi8KisCgsCovCorAoLApbfYV9Xg0UFoVFYVFYFBaFRWFRWBQWhUVhUVgUFoVFYVFYFBaFRWFRWBS2WIV97Hk1NIU969wPnnXuB1FYFBaFRWFRWBQWhUVhUVgUtkIK+53Hng8iSWGllB0b6qb1Z4glyzcdnrxny5+KlR/pkcJuWn+GWPKXmyqrsFvPFivtUhX2tj8TKz+GwqKwKCwKi8KisCgsCjs6CvudmMJO3nNYSplDYbf8qQj50w3aSwUo7EfOE2d8dG+4ZsNKsWj9Z3ufhR1fJKJ4Slqiwn53fNGS8WllzeUrxaL1a1FYFBaFRWFRWBQWhUVhUdgkhc0XW/7Uy7kaXyoiCxt11o+cJ87eUF4hwec/tuSMj323T1lYFBaFRWFRWBQWhUVhUVgUNqqw9z/2vBrd1sLGFTYwV0VhN6z0UpmL1n+m47KBLWf7NQMb79lytlj5kcjC4au/EHb+uXsPX3yeOPsLrox6G1597+Grv7BSnLelAIW9df0Zflb27C+krAwU9rtBNte6vFCFvTzc67URhb3tz8TKj/mvvu3jD6CwKCwKi8KisCgsCovCDpHC7ntejW5rYXMo7Kb1Zyxa/5l7Dk/ec/gzH10SqQrotJZgw0px3paIy25af8ai9Z+79/DV9x7+3EeXnPHRvaGtfmHlGYuWnPHRveFLC1TYW9efIZaM3xpdNq4MFPYLK8X5WxeQhRU6rrBuWf8232XXfnzJ2z7+QFRhhfiL2/zUrPizy1FYFBaFRWFRWBQWhUVhR0Nhu6qF1c7i8hY+89ElEQnzHLSbWgKlisBT2M/GOr960/ozxMqL7z188XlL/nLTlrMXrf/cvXv/cpGfjl2Iwn5hpTh/a/CSfb44+wsJKwOFdRO0i9ZfUmghwdqPR/f6L27Ts7C+oX7sLzISsSgsCovCorAoLAqLwqKwg6Swu/Y9r0ZxtbAmhT1vS/e1sGEtQVg8EFFYvULAFVZFXr8QZmrLVtgdvnoWWkiw9uNL/DxrvBYWhUVhUVgUFoVFYVFYFHaYFfaXavSwFja8zNbhyQ3rl2/qQmEPf+Q8ccaiJUoGVykkCAte17sLn/voErWE4OzzVuavIii6kGCrfd8zzn3PXPLxJWd8/LuF1cJuWf82seT9W9yi2PXv36IprF88oDZDYVFYFBaFRWFRWBQWhR0Chd39+C93P/7LXX70sBZWrSU4b0tXWdjDGzesFEK9FkGYkf2c0rmnoarXqssLP50rOHUs0FbzyiALu9XyXlppF3pFgrCWICx7DbOwf/YX3ovphbAoLAqLwqKwKCwKi8KisAOpsEF0WwvbTXSjsMnR04tqLTy6PZcrMbKuk9XZ1bVQWBQWhUVhUVgUFoVFYQdJYWce/6Ua3dXCxk6YF4UrbHwIIUQJChsftGSFNe64CwqLwqKwKCwKi8KisCjsqCrsE79Uo9vTucjCkoVFYVFYFBaFRWFRWBQWhS1RYfcogcIOi8J2FigsCovCorAoLAqLwqKwg6Swe1BYFBaFRWFRWBQWhUVhUVgUdrAUdu/+Y2qgsCgsCovCorAoLAqLwqKwKCwKi8KisCgsCovCorAoLAqLwqKwhSrsd/cfU6NwhcVT8VQ8FU/FU/FUPBVPxVPx1I48NSV8hf3JMTVQWBQWhUVhUVgUFoVFYVFYFLbqCvvAT46psePRo9MAUAGklCd8+j0XAACAquAp7PeePKaGq7AfAYC+cuLECU1h+z0jAACAShAo7LwagcJKAOgfRoU9AQAAMPJ4Ctt8cl4NFBagCpxAYQEAAEx4CvvgU/NqVEFhm81ms9ns4wQA+s4JFBYAAMBEVRTWnYaLJ69CehFvXDOtBRg6TqCwAAAAJjyFfah9XI3yFTZIuEbkVUgpZE3U3JdccxU1QXYWRoQTKCwAAIAJT2G/3z6uRj+zsCK02Jqo1UQteKnZbCb5a8MWOnajoKm1HavA3no31bDj4iYLfeYECgsAAGDCU9gfHDiuhlFhP5nMwv+rDsVUkVc/RCRHm0bD7sbf2o6VvFnbsSwr5fVuKXaqDTs017ZjIbFDwgkUFgAAwISnsA/PHVcjSWGN/8sWorBCiGazKYSoiZqisEIKkVIUG6N4hW07luW0u+s3lUKn6s6yiGlBpTiBwgIAAJgIFPaEGuUrrJpndf01Iq/Rothk4l4Yfr0eOF7bsZSv3JUv9g0W6Lthw1ZedT0y/sV90voSpqpmYZW5a1PzWlpOw+vXboTD+l1mNtCnpe+7ZduW0jjy1kFnnEhQ2HJvgAIAAFA5PIVtHTyhRl+ysMGym45NKYpNRvNC1Z58iTPkMZOzsGEHelehvIX2mLS+rKlq2pyosL6NupuEc8/ZoO3Y/kxT9l0xYsoauiZFYT8OAAAwwngK+8jBE2qkKKx2JlKwPv7YEYYi19Si2ASivhQ7c8pPqGppzEQvVL1SWdbaB0+T1gfzUActeKrhywbpjGVh4/sULmc2UAYyD6b1hsF2T7rC9nt2AAAAfcPT0NlDJ9ToYy1s8NhVUWzMCxO/wnYdzH057RypKEZdy1TYEqaqT1tP4haosG3HCrRaTc1GJ+ZWYOSZLqSAwgIAABjxFPaHh06q0cdaWHVN50Wx8W/nw+cN2/NMR9e6BNHSKwGC55HLbClPktb3fsLd0CUAACAASURBVKqRixCorqmoZlEKq6WjExRWth3Lsm3OMlsYKCwAAIART2F/9NOTavS3Fjag86LY2NfWhhOPDBdQ9VpFdSteyxpJb9rxs7aS1vd8qtGtoxNyyxJsu7hCgnAopVuDWzds4xly0AEoLAAAgJHOFLaM68Ia5qgXxSYrbDkkfT3O1+YRuBTBwkFhAQAAjHgK++jTJ9Xoy925tFpYYb5SLAo7IPBmFAEKCwAAYMRT2B8/fVKN8hU2JQsbFMW68lqr1bKuS9BrUNgM1ItxwUJAYQEAAIx4CvvY4RfU6EsWNuVVLx3bf3kFKBUUFgAAwIinsPsOv6BG+QoLAHFQWAAAACO+wj7zghooLEAVQGEBAACMeAr7+LMvqNE7hS3k8gUAI0LvFHZqqkUQBEEQgxuewj7x7ItqkIUFqAJkYQEAAIx4Crv/2Rf3P/vi/iMvugtkYQGqAAoLAABgxFfYIy+qQRYWoAqgsAAAAEY8hf3JkRfVGLgs7B0KtyhMTk5OTk7WfHoxdC7ajjVsd6pKughu7Ma5sABQWAAAACOewj753ItPPvfiT/wYuCzsHXfcIWffJWffJeXsLbfcEixPTk4Gy6tXrzZt2nYsEbJgz3Sv6h/BbhSqsNEJF+qL5sknTwOF7TUoLAAAgJFAYV9SYxCzsHL2Xe6yp7BSSilrtVqwnKKwgXM17KKcsHcmF3XHhp2lsV3cMyzP5FHYMkBhAQAAjHgK+9TPXnrquTAGLgt7yy23SDnrLk9OTgbLtVotWM6jsMUJWFkKa1qR0T4bFLYqoLAAAABGFIVVYuCysEn1r6tXr3YfXUybqiqmfN+vr3aXG7awHMfOUXQQNTmth4ZXC2A3wi/vld7C7/NNQ8TdUVmjVBnYjUhXXl96gxyTN2/lDhr2769Xt03fEcgGhQUAADDiKWz7Zy+pMZBZWFP9q1dIMPsuKWcvvPBC06ZqaakiWokK68taRnlrisL647iCF/amOG47PglDX7E1bcf2Nw1LIqJ7YmiQNfnkbiPiGs4/545ANqUo7LG7NkzZthY7Hymo94Vy5OENKVMKXt3w8JHy5wYAAP2jbIV1s7Dpj12QVv/qL6cobGiXgWelZGFDLVNVVEs1pmZhQx+MLcfOqIppslFhw1axhKnePkce1lAMkNVt8NTfNntHIJueK+wjO2PyGsaGu44pTQ/c3Be7DRV2yr75QOKrKCwAwIjhKeyBn7+kxsBlYVPrX73lTIWNSGwHCmtkAQqb4XoxhQ02aTuWiBdC6GUGhkqJ7Mmndht5qigs0rpgeqywgZVGbPXIXfXAYm9+JN64fwobmU/0VRQWAGDEKFthe1QLm1L/unr16gt9TJtGVCysDtDKYktT2GguuGHHLTN+RQK/E6U/Zc5Ke3ODrMkndxuRfEMhQfqOQDa9VdggBRvPbgYvhWpYCYXVR0dhAQBGlSHKwibVv/rLy5YtM21qyCb6haXeV+eWbZeXhVUHNjtmyoVsw5eUOftrLaed0CBj8uat2o4lbDt2Npe6ba5TxyCNvimsJqzxegN1E90yY0Lpbb7zEb2f+l2Z4ul3vmFDPW3oyIjG6t7IWI/c7HcVndLNj6j7nlW9kLS/Qf96MUZCP9HNwyy4uj7HoIY26RMAABhkAoX91YGf/+rAz19yFwYuC5tW/+ovJygsQHUprZDAZLEKyQobuFo8wi/9O6i4jREo7F3HgrHCnuMWaNK4+JQSp72hbthceXNy7W9OhQ2bqXod+He4Ms+gavlH2t8bAADDwpBckSC1/tVbRmFh4OjP6Vxm4zEUEijalLpSHcV3TaVZai5WUVjDHGIKa3bHWF2EKoVuy6gm7nxEGi6GkHd/8+NPLJxtbI/yDWoQX+XtypHtBgAYNDyFfeLZF9UYuCxsSv3rhRdeuMynF0MD9I6SrgubkCXNuiJBoE26ugWC5fWQULHQ0bfteleu4eWthdUnbxjaUP6reWHu/e0Af2IxYfW7yjkotgoAI4ensM2n5oN48Kn5gcvCAgwlfbi1gfZFfCidcYWN1oymfIUdzzW6pBXj6vMJto3YZ4LCJn/zriusoSYhnIymsLn3txOitQTxZGreQeOFBPrVGwAAhgtPYe979Oh9Pw5j4LKwAENJ/+7OFc/qJX+J37XCGqwxRkxhI3N7pLNa2AUpbP797Qh1Bzss7U3+MwOXBYDhp2yFBYD89FJhM756DrJ6vgAlZ2EzL2hVaBY2smEQ3hzCaxGkV0EsKAtb8AW8/FE2PPyI/p4vYND06+kCAAw+ZGEBqktPs7DppagxyUuphdUNKakWVhuom1rY2LZRhU0SvkIUNvf+dkisBkAte13QoAucGABAlSELC1BdeltIEEnUmbXJVPlqPC/eeHUnwxUJApfKeyJ/gsLqX5prCmt004UqbO797ZTE+uPcg8YunhCdPwoLAEMIWViA6tKfi2qFYbxeqdkF45HzurAZ33EnKmzmtbqMsSCFzbu/ua8La3xv429InkFT2nDrMgAYSoYzC9tsNpvNZq1Wazab/Z4LQPeUczqX0X4ylFHN9hlOOYrmI4NCgg0p35gnkKKw6sxVS4sZ882PFFJIkHt/O1bYHKncHIMa/1Qg/woAw8oQZmGbzaYUUgpZEzUpJBYLg0v/rkhQKL5acVJRInkuzgAAAArDk4UNMq9CCFdhg4UUi23YQsduFDGdtmMV3WX/Cd+tYdmjqoPCjgh+FpYbEwAA5KUMhf1kMoX0L6OZ15qouZrlZmG9dGwGDbsbK2s7VtJmbceynHbQyl8ulZTpdUHDDs217VhIbBmgsCOB4cZgAACQQUkK29H6jlESru6CK7Kq0WZ10UuFlbJh98VhC1XYyA5BSaCwQ060epX3BwAgPwOvsG7+1Zh5DaIrhQ2/NA/MTSkOsBtqDYLB7RIUNtpF0KvdaNhBP4Y2DVtYTsNbbzfC2SkjaxOOTy++R/rQhpGjb4i+VpXkcDlztjl2J+ONsm01s92nPxFKAIUdckyXGwMAgDwMvMJ6pa6xzOvCFFZ1Il/NDDnNTgsJ2o7t9xoKoStrQTfGNorgurYXbqpYozbhyPQSG+iKmP4maXabqLCZs01vkOONUnaouxT6QDAkCgsAAFA05SmsiBKsjz92uAe6xRagsLGTvJS8ppruS1dYc5I2ll5MUONIG1VATcvmCSs9ZzYIG2XkM725xedu9mnjcmaDPG+U2tuwGiwKCwAAYGYYsrDxygEpZbCQj5jCJoqca1bhV/55amHVTZWKApOZmdvkUFhzMYOisOkNzDuYhJ8a7ZHC5nmj/Le42HPWqkbvFDb1+v8EQRAEUfUYeIWNF79KKYOsqxBeZF0dNl5IED5v2N637o4uax0qrGJrbccyJxfNbfJIYWzCeiFBegPjDkZ3KD5L5WILHc42r5EnvlHee2zbQ32WGQpLEARBEMYYeIVtNptqCaxUtFUlq5Qg9mW06cym+GVRvVZZp3PFO7VsOyG5aGyT45t304Qj00s8QSryLuhdmN+S2BCdzTazQZ43yp/wMBsshQQAAABmSlLYnl4X1rVYzV81i82uhoUBZHgvReCBwgIAABgpQ2FLoNlsCiFqNa/4VZNXo9QWin621PAWZ1aJ4S6DlVKisAAAAAmUrbAF3pErhXgVQS/9FfqAejGuIQaFBQAAMDIkWViNZrOpaSv+CoMICgsAAGBkOLOwAMMBCgsAAGBkOLOwAMMBCgsAAGBkYLKwpG9hBEFhAQAAjJCFBaguKCwAAIARsrAA1QWFBQAAMDK6WVghasbo97wAQnqtsMcerk+p1B8+tvBODRzYOWVg54GeDAYAAKPA6GZhjbaKwg4Ybcca6vtz9VRhPa/0tdXXWU8s3VcLctp4Z77UorEAANAVI52FzbnSiH4/rsKus992rKG6y1ewPz3Zl6IUtmGnz9C/EVjk6BQsz9E5uPfO7aXCxrXSk1h3VY8VNliJxAIAQDdUOgv7yWQWPhPNVo3lBM1mM6ubht2Nm6XcGrXtWL4Z9S3FWPCdW10bK67nYqfXdiwhLNtO6TM8JpGhG3ahf7foc2g7ltVLhdWyrsbXQvGMlhwEMqpXIiRYr9mHvY39CWjVBv7qYw/Xp6bq9Xr8lcRZAQDA8FPpLGySqvZCYaVisVLKZrPZbDZrtVqWxfZSYSPyVyYjpbDZfSrHONqsu4Offw4Nu8e1sAnSqLwW8VdDiUHgkO5rSYnVhJSusjqSAY7YdWSIfLMCAIDhp+pZ2IV3kkRKIUGz2ZRCSiFroiZFei42bjFhiUFgn8rXz3ZDrUEw+GmCwka7CHq1Gw076MfQpmELy2l46+1GODtlZG3C8enF90gf2jBy9B3puudY19FOYlnR2DQatrAcJ77X8bc9zx8VajMtSW4YXXF3JWOb+HdJbA5tp6wrEqguG1dCXUxdd1TNU3sp5rCZCmseYmrnAa1L5UnKrAAAYPghCxt/QQohXIUNFpItVlNYVU/U+knNjjotJGg7tt9r6EKu3AXdGNsoLugqVrhp0CDuZ+r0EhvoLp3wBsnELGyOnpN33GsR2RERcX/1HQi3S5LYlH1QD7FaC6t2ZR5dnZ1lWcFxSJhEfA6Nki+qpVphXGF1Yn4pZZKsZhYS6A3yK6xpVgAAMPyUrbBdZGFFlGB9/LEjjArr5l9rouaO5WZhvXSsmajCxk7yUrKPqrekK6xRkuKZzgQ1jrRRfcm0bJ6w0nNmg7BRYorTrLC5es7a8WBRF0PjC5EMd/xtNx+RyEZRZdbOvYr35v/bsC2n3bAtp93ZHHp5OpfpO3/VFmMKa8xvLiQLGxfmLrKwZF0BAEYUsrDa2tBiXX91F9x3yURMYRNFzjWx8NvxPLWw6qaxE4qinZjb5FBYczFD+rfexvmrOxghUWEze87c8TSFjSc9u1LYWBZWySIn7UswkLugyGsjeQplZ2Hjp3NFPNJQderpovos2kniGWLZF9XKrIWNKWzKrAAAYPgZgCzsAjtJIklhNYvtTGH13Jz33bijf+PeocJqDmhUWHObLIU1TjhJ1MwNjDuYNv0Oes7c8ZRCgrDcduEKa6yFVQsTkkaXbceyrPCoB+UEuebQ+1rY2JfxigEGr0VcVWtnuCKB6Zv8XLc20PrS5DausPFN8FcAgNGBLKy2VgaVA10prPnMpvA7c7V81JyyNGpW2Kly5SXNeIxtMhXWPOHI9BLPJIu8C3oXsWmpBby5ezbulNJJztO50hRWrdww7kHyFQlUrzaPHm2SWIybMIeeX5Fg4XAOFQAA9IeqZ2FLuy6si1r8mk9hYQRIyd72eFQUFgAAwEils7A9Jel0LrUENjyvq9ajG8/q5zQVeZlRKI6siy4UT+/vzlUIKCwAAPSHSmdhC9kwCe12XOpNDTR5zXGPLoCeUHmFBQAA6A+jm4VNodlsIq9QBVBYAAAAI6ObhQWoPigsAACAEbKwANUFhQUAADAy/FlY0rcwuKCwAAAARsjCApSIEOZIAIUFAAAwQha2XJIMptcxUlRkx4s4UigsAACAEbKw3VDLTeSeCP3y1yr4XGn0fa8LPUwoLAAAgBGysN3QbDZzC4lvJH3311Gw2L6/vUUfJhQWAADACFnYbhhghTVYbNuxCrgtWOT+VQ07+U5jwQ3JEu7Z2sm27i2swtf7/t4WfZhQWAAAACPDmYX9ZDLdja7RzI2nsH33oRSFbTuWZS309qltx/Jcsu1YQli2be6x7ViKfupNutg2HFjKir3PRRwpFBYAAMDIcGZhk1S1WIV17+DlZgXdNWob9+ZeVVTYqCS5DtiwF+Swsc0jOdmE1QltOt1WG7vvbykKCwAA0HuGNgtb7OgaSTlX9SXXa6uusEJ4WczIV/KuIAbf2geKmLJeqwpI0NCobuplAN1tqw7e7zdzgBTWtqcIgiAIYnCDLGw3uJLqpmDdR3VNwEAorBQiVlbadixFUCPf2hvXx3O4Zg3V1naksMnbKqP3+50cLIVdyOYAAAD9ZZizsCJKsD7+2CmDXQtrUiUZkUJNF4OnCevjSdgys7Dh8I3+v5MoLAAAQCmQhe2GjmthZaUtViHMtnagsLmzsKZyhfi72+m20dH7/WaisFA2ff9BJXIGABTKMGdhCxxdo+NaWJe+f4CaQnHFoDIgcpkt5UnS+ng6Naqh4bUEoqdhhevUzTvZNta8su9zd//blaOw8zDISCH6PQXIhsMEUDhkYbshkNS8tbAufbeiWGju5zts27GEbcfO2kpcryZC3XrZaF5XldTwdXWLUFI721aaUsCVfKs7Oy7+TqKwkAluNBBwmAAKZ2izsNW6LqxLv8VIj0Q6/IpfGsthyyF14L6/wws+LigsZIIbDQQcJoDCGc4sbK/pUmFlv6UqL50rbPprPSPhhLAofVfSBRwOFBYywY0GAg4TQOEMZxa214hO0LasrC0pdKOw1aXvqtrlUZAShYUc4EYDAYcJoHDIwvaDUuwHQsrU00KPHQoLmeBGAwGHCaBwyML2D/y1TEpPoBYCCguZ4EYDAYcJoHDIwsLIUElJTQeFhUxwo4GAwwRQOGRhKzRi3xg0sRsdBllhD21bF7mZ9bpth6IvfW3b/sStbtjbm0kNIxVzo0dvMN3KvNgDuveG8CdKXa4yFTtMvcb8Y9CjX+1B+RkYbtyjEI+e/p6ShR15qvodOsgBVlj/P7AbHjU9TVHYhTKC/5lVzI3cY60eXO3op9HF4RuUI16xw9RrvIMeEdb9e9f1xmIH8U+aIabMQ0AWtkIj9oFqV4LCgCqs9+d4RFnU/9JQ2CKpmBvFFXbeLDQmUNhhwXzETZ8MBYDCVophVlioEJU/mQkGU2Ez//fSawyUzzu9kGD/tq8pzSJiFPneat3e/dHGo/N/WMXcyKiw/qHx3cV4WGOHL/Zl9Lq9bq+JyuLn+ezced/SqNhh6jVpHwLB72bib7f5OEY+HNSfqKDb0fwEqBpGhVVW6r/X67Y9qvyPEP4YpHz4B5CFrdCIZYPCVp6BVFjvv58EiVm3d3+osHfvnZ83JWgN/0tpbuT5q2qu6/buH8kcTMXcyKyw83vv1o9X8mFdt+1Q8JOg/W0T19bYf41uV9rm/adih6nXpBQSRP9iMfwYJB3HbIWdH8lPgKqRV2Ej6YyvbdsfSdKnfEqokIUtj45uiFCr1WIdtB1LCMPtqBq2v9ptIYR7AwJTe/9+Vg2700tKNWx/bjnvbhBuIDrcEnyGW2H1VKvyiXbD3vn4/4JuM/VDMP7F9Aj+B1YxN8pU2JTDmnb4ciiL/99hlZKvARU7TL0m6XSu4Acj5ccg6TiisINBPoWN/9Wa91NChSxseSMKIUQtbzSbzVgHbccSlmVpDutpq79Wuedq27GEbUfvwRq83LA7UdiGHfpn27FSVDR+B6+G3Y26DuadwIpmIBU2dyFB2CD85DIorB43PJryR/kI/gdWMTfKLCRIOaz64TOc45yhLFqNyt3VubJFxQ5Tr4l9CPi1Af6RSvsxSDiOKOxgUKDCJvx4hJCFLQ9PYfNpY5LC2o6mdm3HshzHTlTYRtuxFIkNXm47HShs29HFOREUtkgGU2Fzns6VMwtrLIEiCxtSMTfKPJ0r5bCmFBJ0rCw9OnOoayp2mHqN6TfUFZRI+VD2OZ1Jf/qisJWlOIXN/vEgC1veiKHC1kS4LIS+XqQqbEOVVF9JGykK6+VpPR0MX253m4VVCYsF/PKEyHO/jbaptpU+QWHbpn5GkQFV2HwX1fKfRi61Y/pfyjuJJ+I06kvUwvZ7CirZF9VKOazxgjnfgSKdmJXF+0HyMq8obF8x/pEZWZn4Y5B4HNUflRw/D9AnilDYtE8JFbKw5RHR1pTH9CxsQ/VJZU2KwqqOqPpvR7WwnnaqMqr2FYyVmYU1buWvVQybLKwcYIWdj192IHZrg0j4/9WlX5Eg8hEWvyJB+CGorhl2KuZGuW5tkHhY1cOnnZaeR1mCzav3M1Cxw9RrUquJfD3N/jHQjqPyI7FunTkLO4KfAFWjEIWdT/3wDyALmzFi+mNHJCqstj5TYaVfG6AUtqYrbCixXSts2IsIrTNKcEZZmsKatwpeMNjtKDPICtsd3J2rY0bMjQYVDhNA4ZCFLQ+9eKDrLKz0RDWsgM1WWF9i7QUprD+Cnvo1TzJsH1VYc20ACmtg9BQ27zXwIQA3Ggg4TACFQxa2vBGzs7D5amGllL7wKc8yFTZ27YLOTucKO1Jzv2H/DTta2xASLySIb+V1qpx6hsJKOWoKG3xLyDeAnYAbDQQcJoDCIQtbHqGq5ogshY0+8a0yfl3YqAW2HasrhVV6jtTDKmsjExOpp3PFtmrYQjVX9aq2nM4lR0dhoStwo4GAwwRQOGRhyxuxVqs1O6HY0Q10U0UApYLCQia40UDAYQIoHLKwIwz+WnlQWMgENxoIOEwAhUMWtkIjlg0KW3lQWMgENxoIOEwAhUMWdoRBYStPOQobv4onMUAhhej7HIjM4DARROFBFrZCI5YN/lp5ylFYGGz4VR0IOEwARUMWdoRBYSsPCgvZ8Ks6EHCYAIqGLGyFRiwbFLbyoLCQDb+qAwGHCaBoyMKOMChs5UFhIRt+VQcCDhNA0ZCFrdCIZYO/Vh4UFrLht3Ug4DABFA1Z2BEGha08KCxkk+O3VcTaxNd00UmZpI9e+NzcDjO77WBcPlQBioYsbIVGLBsUtvKgsJBNvt9WVbYM4vXUxqX+bZ9X353dQxeILOIDZcw53/TyjJjSW2HqzIcqQNGQhS2PzE9wlVqtFuug7VhCCMtpa+sbtr/abSGEsBsJ7Ru2v6KdT2Ebtj8lu5FrN8MNRIdbQgwUFrLJcqx0pJRS3r06MNenNi4VSzc+ZehH9iwRq3UrsnQ2WJO1X4m9GQfN7C2+soM3ZEQV9sDOKQM7D/R7XkOM8c/Ru1eL+MqgueHP1rtXa58DXjuldyGE2ibakd5tjj+SE/cmskHY0dKNT3m/h2RhSxhRCCFqeaPZbMY6aDuWsCxLc1hPW/21oaPKtmMJ27YjEtuZwjbs0D/bjpWiom3H0ky1YXejrvF+RhoUFrJZsBtFrdXwP1qK+RVC1wrbaefpCpuz8ySjzZjPSCts/eFj2ho0tkcY/xxVVmqLCVJ59+qonrqrVt8t5VMblxr+xFUaGLvN/iPZvCex6RmmL8nCloKnsNkXAhBCJiqs7WiO13Ysy3HsRIVttB1LkVhFYR0rS2Hbju7LiaCwPQGFhWxyfMNu1KwE5VL+j4g2S7HJYJSOZpLUYVL/KWvSjTOJlP7zKGz+Obgvp706tMQVNliJxBaP+c/RyJ+leno1/jfrUxuXLt24UWvmC+pTG5eas6h+A0O3mX8kZ+xR0Dqmv2UrLFlYIYWoiXBZCH29SFXYhiqpvpI2UhTWy9N6XphTYcPejUIZFgtYTjtSOxCZmbaptpU+L2Hbpn5GmmFV2LtXC+0TTf0L3UP9kEv+FgzyKKy2rD5qqAcjRXmNCphHYY1PF66wOXtLMU5NbZN6y99hfAfSXh1ajAorjz1cVx1WqzbwVx97uD41Va/XTQUIXg8eev8gpQz/HI1Yq+kbfu350o1P6aYbJF81U403SOg2Pqt8pOp36Qo7ykS0NeUxPQvbUMVSWZOisKosdqawgXaqMqoqdDBEZhbWuJW/NjorsrABw6qwkY8i5Q9r9QMq/ORSP8M6+/QbDTrPwiYqbPRvi3g/C55pZ9KZLohJrtm1wqZ322mHOihswmpPRt0mvpnuPKA8mdp5INpR1IAThhh5gj9HNZuMy2m0hDVQ1Widq/IhvdRPNBi2M3drmFUHexHN5m5cHY5etsIOXBY2/bEjEhVWW5+psNKvDQjML0thQ4ntVGHDjUVonVGCE8nSFNa8VfCCwW5BDrPChh+QyidU7EPTeyFVrKCgLOxTG5emv80lK2ymHeaUTpFMZm/p4+aZpLpZ2qtDS6bC6kUFip5GTFV5Yt4Eh42gfGrmV1hFRKOtgtyr+lW+uhxLzpoV1vRZHnz1Zvz00RU2WlNbtsKOMhFVFTGR7UBhPVENK2CzFdaXWLsbhfU71jO+5rmF7aMKa64NQGHTGGKF9T8hlQ8o7VTXyGdaWEmAy+oUkYXN9FeZpWhxKcycSbp0Zg5t3DzeMqdxxntLn17OSaovp706tGQWEugN8isslzlIQv91zltIkPgRnFQ9EHQcb2Asse3i8zulkMD7X0GShS1lxIjCGrOw+WphpZS++SnPMhVWv3aB/6pJYa0gtRpur6Z8w24bdrSkISReSBDfyutUOeMMhY0wzArrfhrdnVroFCf32awjxMKzsPnS3IUobJ71xqcpblqgwhotXx0ojwSbQWH1la5zdp2FJetqxmCKHZ7OFWuWeBUCv5GhgdZtd/6q9xPttA8KO8qEqpojshQ2+sTXy/h1YaM62HasThRW6VAIPaGrrdSu7WU4nSu2VcOOTEa9mC2nc7kMtcL6H0DmC6YoT8wVsuDTucJqy8rJcpHUS0o/xZKith0po7GfjhTWuJzZbcro6stprw4t2RfVyqyFjSlsdBPt2Yhj/nPUfFEtl2yFVQQ1UskajGVSXF2bu009xK82q5RHlF5IMMpZ2Fqt1uyEYkdPJG8hAfSB4VZYV50M3zV5RD+34mvBJbfCqjaWJ2ma1E+BBIfVuD5lDmrS1EjKnOODpqhtnjW53swR/VzNdWuD6OUFdLmNK2x8E/zVJfHP0YXc2iBaJaB8GicWwmrd5vwj2UhsepHLxZatsFA5UNgKM+QKm3yRbOgAfmEHAg4TDCZJhbD5G/SOshV2lLOwFQWFrTDDrbA5Sl8hB/zCDgQcJhhIMj+n+/lBThZ25EFhK8zwKqzh/oXQJfzCDgQcJoCiIQtboRH7AwpbYYZXYaE4+IUdCDhMAEVDFnbkQWErDAoL2fALOxBwmACKhixshUbsDyhshUFhIRt+YQcCDhNA0ZCFHXlQ2ApTjsLOwyAjGzi/SQAAGAhJREFUhej3FCAbDhNA4ZCFrdCI/QGFrTBkYSEbfmEHAg4TQNGQhR15jArLp201QGEhG35bBwIOE0DRkIWt0Ij9IUlhcdkKgMJCNvySDgQcJoCiIQtbHin3QoxTq9ViHbQdSwhhOW1tfcPWV7cdSwi7EW2itmjYQgi70bCz/FW32Ibtz1DtPoVwA9HhltBjhSWGI6QQfZ8DkRkcJoIoPMjCljeiEELU8kaz2Yx10HYsYVmW5rCu2EYEte1YlmVFVVGV2LZjecsNO5fCehbbsEP/bDtWioq2HW142bC7Udd4P6NF7xQWhoecv8JE3wMACoUsbHl4Cpvv0y5JYW1Hk7q2Y1mOY6sK23Ysy2nHnNEX0FBgpWw7HXz4uv3m2lcUthhQWAAAACNkYcsbMVTYmgiXhdDXi1SFbciG6qvuk8gq3zQjK/3GwrKsiO52kj9Qs7B6vy7+wJHnfhttU22rSPVDwxbCtk39jBYoLAAAgBGysOUR0daUx/QsbEM1SWVNIHnhctxhYzWxMve3kOH2IlZmG/QYJE0zs7DGrfy14YtkYVFYAAAAA2RhM0ZMf+yIRIXV1mcqbFAKEKieIoRmmw2f27YVXdl5FZdXfRtYZxTLaWcrrHmr4AWD3Y4mKCwAAIARsrDloRcPdJ2FlZ6cOoZ8a/wCAIEB+o3UWljZjcL6vcUSwMaphu2jCmuuDUBhI6CwAAAARsjCljdidhY2Xy2slNJXPeVZkI6NXUwrSNyqVxMILTGfwnruG/ZtHrJhRyscIjMxTkzdyutUmR4Ki8ICAAAYIAtbHqGqLuSKBA3TE98n4+dbuWu8y8BGuwpX5FTYoIRAq4dV1kamJ1JP54ptpdTphtMzXDJslEBhAQAAjJCFLW/EWq3W7IRiR0+jm0ICKAMUFgAAwAhZWJBSZlks9AkUFgAAwAhZ2AqN2E/w10qCwgIAABghCwtSymSFhb6CwgIAABghC1uhEfsJ/lpJUFgAAAAjZGFBSonCVhQUFgAAwAhZ2AqN2E9Q2EqCwgIAABghCwtSShS2oqCwAAAARsjCVmjE/sC1CCoMCgsAAGCELOxow+Vgqw0KCwAAYIQsbIVGLBvuyFV5UFgAAAAjZGHLQ3RCrVaLddB2LCGE5bS19Q1bX912LCHsRrSJ2qJhd3ZT2YbtT0ztNYVwA9HhlqCAwgIAABghC1veiEIIUcsbzWYz1kHbsYRlWZrDumIbEdS2Y1mWFXVGVWLbjiUsJ7fCNuzQP9uOlaKibUcbVTbsbtQ13s+IgsICAAAYIQtbHp7CZpujEDJRYW1Hs7u2Y1mOY6sK23Ysy2nH5NE3UVdg27kLCdzucu0iClswKCwAAIARsrDljRgqbE2Ey0Lo60WqwjZkQ/VV90lkla+ckZV+Y2FZlr+6myys3p2LP17kud9G21TbKlL00LCFsG1TPyMKCgsAAGCELGx5RLQ15TE9C9tQlVJZE9heuBx32GhNbP5aWE87teraoKMgaZqZhTVu5a8NXyQL64HCAgAAGCELmzFi+mNHJCqstj5TYYNSgMD5FDM022z43LY7zsIqwwceGztdy3La2Qpr3ip4wWC3Iw4KCwAAYIQsbHnoxQNdZ2GlJ6eOId8avxJAoIJ+o05rYSP4GWBDhlfmUlhzbQAKawaFBQAAMEIWtrwRs7Ow+WphpZS+8ynPgnRs7GJaQeJWvaxAnisSWIHyhl2aR2rY0cKGyASM81G38joN1BqFDUBhAQAAjJCFLY9QVRdyRYKG6YkvlvETr9w1DVurZG07VvYsIkYZS+qqayOzEqmnc8W2UspzQ882XClsJEFhAQAAjJCFLW/EWq3W7IRiRzfQTSEBlAoKCwAAYIQs7AiDwlYeFBYAAMAIWdgKjVg2KGzlQWEBAACMkIUdYfDXyoPCAgAAGCELW6ERywZ/rTwoLAAAgBGysKMN8lptUFgAAAAjZGErNGJ/wF8rDAoLAABghCwsQHVBYQEAAIyQha3QiAAaKCwAAIARsrAA1QWFBQAAMEIWtkIjAmigsAAAAEbIwpaH6IRaraZt3nYs9yW7oT4TQghhOW3DgA3bf91u5JphuIHocEvoDSgsAACAEbKw5Y0ohBC1vNFsNuM9NOxAVtuOFeplw467prqu7VgpKhrpyt+2C3WN9wMLBYUFAAAwQha2PDyFzb6vqxCyM4U1OGfbscyp2TgobHVBYQEAAIyQhS1vxFBhayJcFkJfLzpV2LZjxUsJTJlZf71SfaDUDoRdxBVW28qtY/DaNGwhbNvUDywUFBYAAMAIWdjyiGhrymPuLGyGM3raqcqo0kEowZlZWONW/trwRbKwxYPCAgAAGCELmzFi+mNHJCqstr7DQoKkdKsM2gUeGztdy3La2Qpr3ip4wWC3UBQoLAAAgBGysOWhFw8sOAvr+2K6xCoN1HRqSA6FTbviAQrbQ1BYAAAAI2RhyxsxOwvbZS2sUgwbLEUuQhBsF5Hdhu0u5ikkiG/ldarU4aKwxYPCAgAAGCELWx6hqnZ1RYL4dWEVX/RPr9KM0idsqayNGLBIPZ0rtlXDFpFx1GvVcjpXcaCwAAAARsjCljdirVZrdkKxo8MggsICAAAYIQsLUF1QWAAAACNkYSs0IoAGCgsAAGCELCxAdUFhAQAAjJCFrdCIABooLAAAgBGysADVBYUFAAAwQha2QiMCaKCwAAAARsjCAlQXFBYAAMAIWdgKjQiggcICAAAYIQsLUF1QWAAAACNkYSs0IoAGCgsAAGCELGx5iE6o1WrmXtqOFbaynLb5hcgrIQ3bf91u5JpzuIHocEsoAhQWAADACFnY8kYUQoha3mg2m4YuGnZETtuOFSpl27FCvWzYcddU17UdK0VFI13523ahrvF+oDNQWAAAACNkYcvDU1iZK0wKm+6lUV+MO2fbscyp2TgobFVAYQEAAIyQhS1vxFBhayJcFkJfLxIUtmGbygOCtaovth0r3tZkwP56pfpAqR0Iu4grrLZVJCPcsIWwbVM/0BkoLAAAgBGysOUR0daUx6QsrFlhA3NVa2ETnNHTTlVG1U4jXaVmYY1b+WvDF8nCLhQUFgAAwAhZ2IwR0x87IlFhtfUdK6yehU1KtwYbhB4bO13LctrZCmveKnjBYLfQHSgsAACAEbKw5aEXD3Sahe2gFjZdYpUGGZldtX1UYdOueIDCFgYKCwAAYIQsbHkjZmdh02thvQRqrisShMWwwVLkIgSBhEZkt2Gbzgzz2muFBPGtvE6VOlwUdqGgsAAAAEbIwpZHqKpdXpFASplxXVjFF3291YzSJ2yprI0YsEg9nSu2lXK9r9CsY/1AZ6CwAAAARsjCljdirVZrdkKxo8MggsICAAAYIQsLUF1QWAAAACNkYSs0IoAGCgsAAGCELCxAdUFhAQAAjJCFrdCIABooLAAAgBGysADVBYUFAAAwQha2QiMCaKCwAAAARsjCAlQXFBYAAMAIWdgKjQiggcICAAAYIQsLUF1QWAAAACNkYSs0YmfE7vnqErkBrU5sA+2utMp622lL2XYsuxH8kzBi9hSVm9wa59tZr6MECgsAAGCELGx5dHR32VqtltVfwzZ5YduxwrWeexqeeK7rN4331XYsu9F2LNvxO9S2N81HU2UUdqGgsAAAAEbIwpY3YrPZzNlSSOkeF43UDKsIRDOHwiq6acrSxgeyG9FNNCNt2JEcb8O2nHa+tC0KmwYKCwAAYIQsbHm4CivyRK2WpLC5lDB/IUFUMrX+G45t+5laJZEaF9OGbeja2NI8XxQ2CRQWAADACFnY8kYsWmG9VKe7qCZQM7Kw6blcRVndQoJGw7achmPbdrB5PAVrLhNQCwkMCWBlIH+CJs0eZVBYAAAAI2RhyyOisLWaqNWazaa74C43m80cChsIY+iSarYzufzVUAtrN3xtjCZMfTt2NwnO7bLd6gDdVztQ2Iat1yD4r8VfARQWAAAgAbKwGSOmP3aEqrCesPoWG7psqsK6Shioq6+OEf3MVUigNPKuOGCoNIilWxt2zHX99TkV1tCy7VjCthMqEUYeFBYAAMAIWdjyWHghgZcAVR3WbmhpUd1n409cj2y3vTRreHKW/xW/fupWkB6NXMQgMi+zw+ZVWGFZyZcsGGlQWAAAACNkYcsbccEKG9hpJD8aNdhotUCOKxIo5bHRDcOxghcatlAUVjnDS3db7YoE0UKCoDdHrYVtOxaZ2BgoLAAAgBGysOXhlbr6xa8ZEVdY4/n9+kUEomnOlMLYtl9FK0RCEWr0Oq/+ZbNCcdWu9qpmbg3XhY3XMCQoMh6rgMICAAAYIQtb3oi1Wi25StVAdGsv85pW6hovVPVPx7Ii9QBSrRkwTjWabo1dNSux+BUKBoUFAAAwQhYWoLqgsAAAAEbIwlZoRAANFBYAAMAIWViA6oLCAgAAGCELW6ERATRQWAAAACNkYQGqCwoLAABghCxshUYE0EBhAQAAjJCFBaguKCwAAIARsrAVGhFAA4UFAAAwQha2VGq5MdydC0YPFBYAAMAIWdhSR2w2m0LIfGFS2Ibt3RUrfpMu7+ZZaXfv6vKWWtqNZKFEUFgAAAAjZGFLpUiFVe8Nqz3Ni+a7CV2gsP0DhQUAADBCFrbUEZu5iStsw1ZcMzEL2xFtx+pquyJ7gDRQWAAAACNkYUsl0FO32lUI4a5R29RqNaPCStmTLCwKW2VQWAAAACNkYUsdMSnnqr7kem2ywjYcKykLm1oIayiHNQho27GCjG7DFsJuqK2UAeyGmhem0KA3oLAAAABGyMKWiiupbgrWfVTXBCQorCuQHdlikLY1ElVeX2YbtrCctv+PIroJxksWtnegsAAAAEbIwmaMmP7YKQuohW07luU4tuW0E5Otga2G4uottR3LpLJJAuqmV/0twlbR9Wk9QDGgsAAAAEbIwpZKYbWwPoYi2IiuqjIbd81OFTbcSugZWugJKCwAAIARsrCljlhELWzkdC41IeuvUC1XdV7/pfAiWWYBdSsIDK3ajtMIukqsLYACQWEBAACMkIUtlUBSu6qFVesCvDSploXVU62a0LpPo3KqFSI07CD96p/ZpWhqeAKXrcgsp3P1DBQWAADACFnYUkdcQC1s8O2+Y/sCqdfEKvYauCZuOdCgsAAAAEbIwpbKQhQWRhAUFgAAwAhZ2FJHNF5IIInCR4eBA4UFAAAwQhYWoLqgsAAAAEbIwlZoRAANFBYAAMAIWViA6oLCAgAAGCELW6ERATRQWAAAACNkYQGqCwoLAABghCxshUYE0EBhAQAAjJCFLZVabrioFkgUFgAAIAGysKWO2Gw2hZD5IuUGs/EbcwW35oq/oMCtugYNFBYAAMAIWdhSKVJhldvJ6k9hWEBhAQAAjJCF1UdJopD+F3KD2YatZFwTs7AwVKCwAAAARsjCRkhS1WIVVgjhVrsKIdw1aptarWZUWCnJwo4cKCwAAIARsrC5Rul1FlZ9yfXaZIVtOFZSFja1EJZy2AEEhQUAADBCFjZCOQrrpmDdR3VNQILCuobakYQGaVsYSFBYAAAAI2RhDaNoictgffyxUxZQC9t2LMtxbMtpJyZbA1sNxdVbajsWKjuIoLAAAABGyMJGGJhaWB9DEWxEV1WZ5YyvwQOFBQAAMEIWNtcoVaqFjZzOpSZk/RWq5arOSyp28EBhAQAAjJCFjVBaFrarWli1LsArHNCysHqqVbNWJHbQQGEBAACMkIXVR6n4dWEtx7H9i8DqNbGKvQYXkUVZBxoUFgAAwAhZ2FJZiMLCCILCAgAAGCELWyrGCwkk0e/JQv9BYQEAAIyQhQWoLigsAACAEbKwANUFhQUAADBCFhaguqCwAAAARsjCFs8ATRUqDgoLAABghCwsQHVBYQEAAIyQhS2eAZoqVBwUFgAAwAhZWIDqgsICAAAYIQtbPFWfqn4XWg/9Xl9JN/4KW5t7sb1b4NqN4J+EEfUpNWzDQEqbTu80ljVs0j7k7rjtWIm3P+u68wgoLAAAgBGysANA/nt6NZvNWq2W1V/DNolX27HCtZ57Gp54rus3jffVdiy70XYs2/E71LY3ELTwF4Ib5IYC3bDTO1EV3PPmuIOnenrC7XiVjrxeUFgAAIA+Qxa2eAqfarPZzNlSSGm8rVe6uQWimUNho2IYy9LGB7Ib0U0sL0mbZpKhbyoSmKWwkU20KQfLkZ3UMeR5G7ZQM8Nei8ysskRhAQAAekrZCgtd4CqsyBO1WpLC5nKuLKkMiVqc1n/DsW1LsVXPDMNt9PmY52dOySrWbdjCdhXTsu3Y3nRahyATKxtQWAAAgD5TtsKShe2CohVWyTYqMpadhc3InYbK6hYSNBq25TQc27aDzf0BYsoaTElLmUYmoWxt1tHAde2G30aZu+W0s/YgqrnmggsZLSQw5KeV98Gfr+mvgDygsAAAAEbIwg4AEYWt1USt1mw23QV3udls5lDYwMhCBUwTxtRaWLvhe1k0I+mrqLtJcG6Xnxv1hTCikpbT9l+LymnSJBIU1v/Sv2EH08vKwqZnpztQ2Iat9++/Fn+lE1BYAAAAI2Rhi8edavpjR6gK6wmrb7Ghy6YqrOtcgfr5bhbRz1yFBEoj74oDWgOvUVTaGrbmupGSAstpB+eA6f3EylAj/QeJTzfBatu2qrCGLKzeb1EKa2jZdixh26nXWMgBCgsAAGCELOwAsPBCAj3J6V/ESvUu3WfjT1xRa7e9NGuY2fRVUj91K8g/Ri5iYCwKcDeM6l4gyL6XxjfXdzNPFjY6elqeNslh8yqssKzkSxbkAoUFAAAwQha2eKpXCxv4X0T+ogYbTUjmuCKBUh4b3TAcK3ihYUcEUfFRf1E5c6phW45jR3K7UUVMPJsqVNjYBb0ixRMJ1zxQdsGs3voVCaKFBMFkHbUWtu1YC8jEorAAAABGyMIOAF6pq1/8mhFxhTUqn34RgWgeMaUwth2KYK4LqfrKGJpheCMDpYll24Hz6ad6aQ6YprBeOtWyQgmNKKy7n36BapbCantjui5svMQiweC78lgUFgAAwAhZ2OIpfKq1Wk3/UjyV6NZhtWniBvpJWeHpWJb+Dbsinia0dKuunw1bWI4Tvfyq0iRSnRCsUe6ioKmkYXT9qrBt9x4LoStnXOF24dfBKhQUFgAAwEjZCgsA+UFhAQAAjJCFLZ4BmipUHBQWAADACFlYgOqCwgIAABghC1s8AzRVqDgoLAAAgBGysADVBYUFAAAwQha2eKozVSFEyxYLfOz3Tow0KCwAAIARsrDDTMsWS6bkQqJlo7D9BIUFAAAwQha2eKozVSEWqrBkYfsLCgsAAGCELOyAcYfCLVEmJydnZ2fVxmRhBx0UFgAAwAhZ2OLp6VTvuOMO4/rJyUn3UbVYsrCDDgoLAABghCzsgHHw4EEppbhDiFsicukqrJSyVqsFK8nCDjooLAAAgBGysMVT+FSPHz+uLsT9VUo5OTlZ8wlWkoUddFBYAAAAI2RhBwMxK8SskIq/Hjx4MCiKVVuuXr06WCYLO+igsAAAAEbIwhZPj7Kw4n5hzL9qzVSFdbOw0/Py6VnfSr8j5bz8wJRcMiX3+M2CVz+gnAy2jixsBUBhAQAAjJCFHQw8i/X99Y4Ejh8/bsjCKtq67qDc8x3PX6e3eeY6PS/3fEcu2Saf9s2VLGxFQGEBAACMkIUtHneq6Y9d4Fqsdtms4KWAeBZWFdY9rqR+R+/BTcS6edlAbcnC9h0UFgAAwAhZ2AFAO51LRgthVQ4ePGishf3ArHx6Vn5gVsqDejlBPKbnpfRFlixsf0FhAQAAjJCFHQxmxbtmb7lFSjl7yy2z4l3B+iD5etDnwgsvDF4Nr0iwTT49L/fMhxnWPdKrKHCrC9ZNySXb5PR3oqUFZGH7DQoLAABghCzsYOCaa/AoE8phZ2dnVYVVr0iw7mA087pNPu03U13W4yC1sJUAhQUAADBCFnYA8KpgFX+Vfv41SL7Ozs7Ozs42m01zFnZKrjuoXJeA68IOCCgsAACAEbKwg0HOLKymsGEW1nS1Aa4LW31QWAAAACNkYQeDeC2smnx1868uy5YtC7Zys7BueUBQLUAWdoBAYQEAAIyQhR0A4lckaDabq1evvvDCC91Hl2U+wYbcnWvQQWEBAACMkIUdZtRa2O6CLGx/QWEBAACMkIUdZlq2EEIs8LHfOzHSoLAAAABGyMICVBcUFgAAwAhZWIDqgsICAAAYIQsLUF1QWAAAACP/P/qBtf3x6ipnAAAAAElFTkSuQmCC" alt="" />

虽然上面的脚本避免了重复输入41种数据,但是后期的结果查看还是一个艰辛的过程,不知道QTP有没有把测试人员要求的结果描述统一到一个页面来的功能呢,有待挖掘。

QTP脚本--应用参数化来测试某个输入框的更多相关文章

  1. QTP脚本汇总比较有价值

    1.Object Spy的Tips Hold the CTRL key to change the window focus or perform other mouse operations  2. ...

  2. loadrunner 脚本优化-参数化之Parameter List参数同行取值

    脚本优化-参数化之Parameter List参数同行取值 by:授客 QQ:1033553122 select next row 记录选择方式 Same line as,这个选项只有当参数多余一个时 ...

  3. Loadrunner脚本优化-参数化之关联MySQL数据库获取数据

    脚本优化-参数化之关联MySQL数据库获取数据 by:授客 QQ:1033553122 测试环境: Loadrunner 11 Win7 64位 实操: 1.   安装MySQL ODBC驱动程序 O ...

  4. loadrunner脚本中参数化和返回值输出log到外部文件

    loadrunner脚本中参数化和返回值输出log到外部文件 很多时候,我们在做性能测试之前,需要造数据,但是使用的这些参数化数据和生成的返回数据在后面的测试都会用的,所以我们需要在造数据过程中,将参 ...

  5. 【转】JMeter脚本的参数化

    JMeter脚本的参数化 当你利用Badboy将你的测试脚本录制完毕后,接下来就是脚本的调试工作了.在我看来,调试应该包括有以下几个方面:1.根据测试场景对脚本进行必要的修改:2.脚本参数化:3.添加 ...

  6. QTP脚本不能录制怎么办?

    QTP是基于VBS脚本语言的,大部分VBS脚本都能在QTP上运行,只是在一些细节上略有不同,比如说VBS上停止用sleep,QTP上用wait.QTP的强大之处在于对程序窗口的操作,有很多针对窗体的属 ...

  7. shell脚本进阶之条件测试与条件语句

       接着上篇博客,今天整理一下关于条件测试和条件语句方面的知识. shell脚本进阶之条件测试    在编写shell脚本时,经常需要对一些条件进行判断,可以使用测试命令test辅助完成测试过程.t ...

  8. shell脚本中的整数测试

    shell脚本中的整数测试 author:headsen chen      2017-10-17   13:58:12 个人原创,转载请注明作者,出处,否则依法追究法律责任 1,test用法:tes ...

  9. loadrunner 脚本优化-参数化之Parameter List参数取值

    脚本优化-参数化之Parameter List参数取值 by:授客 QQ:1033553122 参数取值选项 Select next row Update value on 以上两个选项是改变参数化取 ...

随机推荐

  1. 【deep learning学习笔记】注释yusugomori的LR代码 --- LogisticRegression.h

    继续看yusugomori的代码,看逻辑回归.在DBN(Deep Blief Network)中,下面几层是RBM,最上层就是LR了.关于回归.二类回归.以及逻辑回归,资料就是前面转的几篇.套路就是设 ...

  2. 24位和8位BMP图片保存纯C代码

    BMP图片大家都知道,可以通过查看BMP图片结构使用纯C就可以打开,编辑,处理,保存图片.非常方便使用. 具体BMP结构可以参考:wingdi.h头文件.今天主要在进行删减代码,需要把多余的代码删除, ...

  3. UVa 10616 - Divisible Group Sums

    称号:给你n数字.免去m一个,这使得他们可分割d.问:有多少种借贷. 分析:dp,D01背包. 背包整数分区. 首先.整点d.则全部数字均在整数区间[0,d)上: 然后,确定背包容量,最大为20*10 ...

  4. DL动态载入框架技术文档

    DL动态载入框架技术文档 DL技术交流群:215680213 1. Android apk动态载入机制的研究 2. Android apk动态载入机制的研究(二):资源载入和activity生命周期管 ...

  5. POJ 1122 FDNY to the Rescue!

    给出某些交叉点的距离,-1 表示无法到达. 然后给出火灾发生点  和 附近的消防局位置. 排列消防局 的 时间 与路径. 反向建图,以火灾出发点为起点做一次SPFA. #include<cstd ...

  6. Flexigrid的使用(整合Struts2)

    Flexigrid是一个jQuery表格插件 下载地址:http://download.csdn.net/detail/itmyhome/7613879 用法: 一.相关资源文件的引入 <lin ...

  7. 为什么 as sysdba着陆方法oracle数据库,为什么刚刚输入username和password我们都可以登录?

    事实上,这是oracle问题数据库的身份验证方法 该 sqlnet.ora在文件 SQLNET.AUTHENTICATION_SERVICES= (NTS) 变 SQLNET.AUTHENTICATI ...

  8. JavaScript发展史,与JScript差别,引入方式,数据类型,命名规范,命名推荐,解决命名冲突

    文件夹: 1.JavaScript发展史 2.JavaScript与JScript差别 3.JavaScript引入方式 4.JavaScript基本数据类型及布尔值 5.JavaScript命名规范 ...

  9. 3p

    哈,不要自卑.爱情和婚姻可遇不可求,缘到自然成.首要的是人好,容貌別太差,毕竟天天在一起看着要舒心才好,另外应该有上进心,避免势利小人.这些,都要看机缘.所谓right person at right ...

  10. birdnest是什么意思_birdnest在线翻译_英语_读音_用法_例句_海词词典

    birdnest是什么意思_birdnest在线翻译_英语_读音_用法_例句_海词词典 birdnest