最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小。 prim算法就是一种最小生成树算法。

普里姆算法的基本思想:

从连通网N={V,E}中的某一顶点U0出发,选择与它关联的具有最小权值的边(U0,v),将其顶点加入到生成树的顶点集合U中。以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合U中。如此继续下去,直到网中的所有顶点都加入到生成树顶点集合U中为止。

下面举例说明下prim算法:

c语言实现如下:(使用邻接矩阵存储)

#include <stdio.h>
#include <malloc.h>
#define VERTEXNUM 6 void createGraph(int (*edge)[VERTEXNUM], int start, int end, int value);
void displayGraph(int (*edge)[VERTEXNUM]);
void prim(int (*edge)[VERTEXNUM], int (**tree)[VERTEXNUM], int startVertex, int* vertexStatusArr); int main(void){
//动态创建存放边的二维数组
int (*edge)[VERTEXNUM] = (int (*)[VERTEXNUM])malloc(sizeof(int)*VERTEXNUM*VERTEXNUM);
int i,j;
for(i=0;i<VERTEXNUM;i++){
for(j=0;j<VERTEXNUM;j++){
edge[i][j] = 0;
}
}
//存放顶点的遍历状态,0:未遍历,1:已遍历
int* vertexStatusArr = (int*)malloc(sizeof(int)*VERTEXNUM);
for(i=0;i<VERTEXNUM;i++){
vertexStatusArr[i] = 0;
} printf("after init:\n");
displayGraph(edge);
//创建图
createGraph(edge,0,1,6);
createGraph(edge,0,3,5);
createGraph(edge,0,2,1);
createGraph(edge,1,2,5);
createGraph(edge,1,4,3);
createGraph(edge,2,4,6);
createGraph(edge,2,3,5);
createGraph(edge,2,5,4);
createGraph(edge,3,5,2);
createGraph(edge,4,5,6); printf("after create:\n");
displayGraph(edge);
//最小生成树
int (*tree)[VERTEXNUM] = NULL;
prim(edge, &tree, 0, vertexStatusArr);
printf("after generate tree:\n");
displayGraph(tree); free(edge);
free(tree);
return 0;
}
//创建图
void createGraph(int (*edge)[VERTEXNUM], int start, int end, int value){
edge[start][end] = value;
edge[end][start] = value;
}
//打印存储的图
void displayGraph(int (*edge)[VERTEXNUM]){
int i,j;
for(i=0;i<VERTEXNUM;i++){
for(j=0;j<VERTEXNUM;j++){
printf("%d ",edge[i][j]);
}
printf("\n");
}
} void prim(int (*edge)[VERTEXNUM], int (**tree)[VERTEXNUM], int startVertex, int* vertexStatusArr){
//申请存储树的内存
*tree = (int (*)[VERTEXNUM])malloc(sizeof(int)*VERTEXNUM*VERTEXNUM);
int i,j;
for(i=0;i<VERTEXNUM;i++){
for(j=0;j<VERTEXNUM;j++){
(*tree)[i][j] = 0;
}
}
//从顶点0开始,则顶点0就是已访问的
vertexStatusArr[0] = 1;
int least, start, end, vNum = 1;
//如果还顶点还没有访问完
while(vNum < VERTEXNUM){
least = 9999;
for(i=0;i<VERTEXNUM;i++){
//选择已经访问过的点
if(vertexStatusArr[i] == 1){
for(j=0;j<VERTEXNUM;j++){
//选择一个没有访问过的点
if(vertexStatusArr[j] == 0){
//选出一条value最小的边
if(edge[i][j] != 0 && edge[i][j] < least){
least = edge[i][j];
start = i;
end = j;
}
}
}
}
}
vNum++;
//将点设置为访问过
vertexStatusArr[end] = 1;
//将边加到树中
createGraph(*tree,start,end,least);
}
}

c语言实现如下:(使用邻接表存储)

#include <stdio.h>
#include <malloc.h>
#define VERTEXNUM 6
//存放顶点的邻接表元素
typedef struct edge{
int vertex;
int value;
struct edge* next;
}st_edge; void createGraph(st_edge** edge, int start, int end, int value);
void displayGraph(st_edge** edge);
void delGraph(st_edge** edge);
void prim(st_edge** edge, st_edge*** tree, int startVertex, int* vertexStatusArr); int main(void){
//动态创建存放边的指针数组
st_edge** edge = (st_edge**)malloc(sizeof(st_edge*)*VERTEXNUM);
int i;
for(i=0;i<VERTEXNUM;i++){
edge[i] = NULL;
}
//存放顶点的遍历状态,0:未遍历,1:已遍历
int* vertexStatusArr = (int*)malloc(sizeof(int)*VERTEXNUM);
for(i=0;i<VERTEXNUM;i++){
vertexStatusArr[i] = 0;
} printf("after init:\n");
displayGraph(edge);
//创建图
//从顶点0到顶点1的边,值为6,一下类推
createGraph(edge,0,1,6);
createGraph(edge,0,3,5);
createGraph(edge,0,2,1);
createGraph(edge,1,2,5);
createGraph(edge,1,4,3);
createGraph(edge,2,4,6);
createGraph(edge,2,3,5);
createGraph(edge,2,5,4);
createGraph(edge,3,5,2);
createGraph(edge,4,5,6); printf("after create:\n");
displayGraph(edge); st_edge** tree = NULL;
//从edge从中生成最小树tree,从顶点0开始
prim(edge, &tree, 0, vertexStatusArr);
printf("after generate tree:\n");
displayGraph(tree); delGraph(edge);
edge = NULL; delGraph(tree);
tree = NULL; free(vertexStatusArr);
vertexStatusArr = NULL;
return 0;
}
//创建图
void createGraph(st_edge** edge, int start, int end, int value){
st_edge* newedge1 = (st_edge*)malloc(sizeof(st_edge));
newedge1->vertex = end;
newedge1->value = value;
newedge1->next = NULL;
st_edge** edge1 = edge + start;
while(*edge1 != NULL){
edge1 = &((*edge1)->next);
}
*edge1 = newedge1; st_edge* newedge2 = (st_edge*)malloc(sizeof(st_edge));
newedge2->vertex = start;
newedge2->value = value;
newedge2->next = NULL;
st_edge** edge2 = edge + end;
while(*edge2 != NULL){
edge2 = &((*edge2)->next);
}
*edge2 = newedge2;
}
//打印存储的图
void displayGraph(st_edge** edge){
int i;
st_edge* p;
for(i=0;i<VERTEXNUM;i++){
printf("%d:",i);
p = *(edge+i);
while(p != NULL){
printf("%d(%d) ",p->vertex,p->value);
p = p->next;
}
printf("\n");
}
}
//释放邻接表占用的内存
void delGraph(st_edge** edge){
int i;
st_edge* p;
st_edge* del;
for(i=0;i<VERTEXNUM;i++){
p = *(edge+i);
while(p != NULL){
del = p;
p = p->next;
free(del);
}
edge[i] = NULL;
}
free(edge);
}
//prim算法
void prim(st_edge** edge, st_edge*** tree, int startVertex, int* vertexStatusArr){
//为最小生成树申请内存
*tree = (st_edge**)malloc(sizeof(st_edge*)*VERTEXNUM);
int i,j;
for(i=0;i<VERTEXNUM;i++){
(*tree)[i] = NULL;
}
//从顶点0开始,则顶点0就是已访问的
vertexStatusArr[0] = 1;
st_edge* p;
int least, start, end, vNum = 1;
//如果还顶点还没有访问完
while(vNum < VERTEXNUM){
least = 9999;
for(i=0;i<VERTEXNUM;i++){
//选择已经访问过的点
if(vertexStatusArr[i] == 1){
for(j=0;j<VERTEXNUM;j++){
//选择一个没有访问过的点
if(vertexStatusArr[j] == 0){
p = *(edge+i);
//选出一条value最小的边
while(p != NULL){
if(p->value < least && p->vertex == j){
least = p->value;
start = i;
end = j;
}
p = p->next;
}
}
}
}
}
vNum++;
//将点设置为访问过
vertexStatusArr[end] = 1;
//将边加到树中
createGraph(*tree,start,end,least);
}
}

算法之prim算法的更多相关文章

  1. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  2. Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法

    1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...

  3. 最小生成树问题:Kruskal算法 AND Prim算法

    Kruskal算法: void Kruskal ( ) {     MST = { } ;                           //边的集合,最初为空集     while( Edge ...

  4. 最小生成树算法 1.Prim算法

    最小生成树(MST):一个有N个点的图,边一定是大于等于N-1条边的.在这些边中选择N-1条出来,连接所有N个点.这N-1条边的边权之和是所有方案中最小的. Prim算法的时间复杂度时O(n^2)的, ...

  5. hdu 1162 Eddy&#39;s picture (Kruskal算法,prim算法,最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成 ...

  6. 【算法】prim算法(最小生成树)(与Dijkstra算法的比较)

    最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有 ...

  7. 图-kruskal算法,prim算法

    要求无向图 最小生成树: 连通性,累加和最小 并查集 结构 K算法 从最小的边开始,加上有没有形成环,没有就加,加上有环就不要 难点:如何判断加上一条边,有没有形成环. P算法 从点的角度开始

  8. 最小路径(prim)算法

    #include <stdio.h>#include <stdlib.h>/* 最小路径算法 -->prim算法 */#define VNUM 9#define MV 6 ...

  9. prim算法

    最小生成树 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法 ...

随机推荐

  1. 天体程序猿叹息——变化hosts对

    没有解释更新一SDK像贼,我真诚地希望在天上Android.ios我们已经禁止了.要玩不能玩才最寂寞 安装成功不寂寞hosts文件: 74.125.237.1 dl-ssl.google.com173 ...

  2. Upload无刷新上传控件

    Upload无刷新上传控件 最近在做一个web开发项目 ,用到upload上传控件 ,由于c#提供的控件局限性太大 ,所以就自己从国外大牛 手里借鉴一下. 该控件可以判断上传的文件是否已存在 ,减少了 ...

  3. 数据泵expdp,impdp使用结

    EXPDP,IMPDP远程导出,导入数据库到本地 1.本地建立导出用户hr_exp并全然删除机hr的用户 C:\Users\Administrator>sqlplus / as sysdba S ...

  4. 快速构建Windows 8风格应用21-构建简单媒体播放器

    原文:快速构建Windows 8风格应用21-构建简单媒体播放器 本篇博文主要介绍如何构建一个简单的媒体播放器. <快速构建Windows 8风格应用20-MediaElement>博文中 ...

  5. JavaScript 多级联动浮动(下拉)菜单 (第二版)

    JavaScript 多级联动浮动(下拉)菜单 (第二版)   上一个版本(第一版请看这里)基本实现了多级联动和浮动菜单的功能,但效果不是太好,使用麻烦还有些bug,实用性不高.这次除了修改已发现的问 ...

  6. 深入浅出SQL注入

    原文:深入浅出SQL注入 之前在做学生信息管理系统和机房收费系统的时候,对于SQL注入的问题已经是司空见惯,但是并没有真正的地形象生动的理解SQL注入到底是什么玩意儿.直到这次做牛腩才在牛老师的举例之 ...

  7. ASP.NET MVC IOC 之AutoFac

    ASP.NET MVC IOC 之AutoFac攻略 一.为什么使用AutoFac? 之前介绍了Unity和Ninject两个IOC容器,但是发现园子里用AutoFac的貌似更为普遍,于是捯饬了两天, ...

  8. Zabbix监控系统功能及基本使用

    一.Zabbix基本介绍:    zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案.它能监视各种网络参数,保证服务器系统的安全运营:并提供柔软的通知机制以让系 ...

  9. Fitnesse测试用例脚本自动生成设计

    Fitnesse是通过wiki形式来展示.管理和执行测试用例,若要在Fitnesse上设计测试用例,前提是必须熟悉一定的wiki语法,虽然wiki语法简单,但是若要设计成百上千的测试用例还是有很大的工 ...

  10. In C# 代码实现

    SOLID 设计原则 In C# 代码实现   [S] Single Responsibility Principle (单一职责原则) 认为一个对象应该仅只有一个单一的职责 namespace Si ...