前言

介绍

[NetMQ](https://github.com/zeromq/netmq.git)是ZeroMQ的C#移植版本,它是对标准socket接口的扩展。它提供了一种异步消息队列,多消息模式,消息过滤(订阅),对多种传输协议的无缝访问。
当前有2个版本正在维护,版本3最新版为3.3.4,版本4最新版本为4.0.0-rc5。本文档是对4.0.0-rc5分支代码进行分析。

zeromq的英文文档

NetMQ的英文文档

目的

对NetMQ的源码进行学习并分析理解,因此写下该系列文章,本系列文章暂定编写计划如下:

  1. 消息队列NetMQ 原理分析1-Context和ZObject
  2. 消息队列NetMQ 原理分析2-IO线程和完成端口
  3. 消息队列NetMQ 原理分析3-命令产生/处理和回收线程
  4. 消息队列NetMQ 原理分析4-Session和Pipe
  5. 消息队列NetMQ 原理分析5-Engine
  6. 消息队列NetMQ 原理分析6-TCP和Inpoc实现
  7. 消息队列NetMQ 原理分析7-Device
  8. 消息队列NetMQ 原理分析8-不同类型的Socket
  9. 消息队列NetMQ 原理分析9-实战

友情提示: 看本系列文章时最好获取源码,更有助于理解。


Context

NetMQ有一个Context对象,用于初始化并保存当前NetMQ底层的对象状态,如IO线程、回收线程、进程间传输节点字典、插槽m_slots(用于保存IO对象,回收对象和socket对象的Mailbox)、初始化但未用到的Socket对象指针数组以及当前Mailbox(用于接收终止信号)等。

初始化Context

当创建第一个Socket对象时会初始化IO线程,回收线程以及工作线程。默认Socket数量1024个,IO线程1个,回收线程1个。

m_slots = new Mailbox[m_slotCount];//m_soltCount = 1 + 1 + 1024

m_slots[0]保存的是Context的Mailbox。

m_slots[TermTid] = m_termMailbox;//用于当前Context接收终止信号

m_slots[1]保存的是回收对象的Mailbox,保存完毕后就会启动回收对象轮询线程。

m_reaper = new Reaper(this, ReaperTid);//ReaperTid = 1
m_slots[ReaperTid] = m_reaper.Mailbox;
m_reaper.Start();

m_slots[2]保存的是IO线程对象的Mailbox。

for (int i = 2; i != ios/*ios = 1,默认用1个io线程*/ + 2; i++)
{
IOThread ioThread = new IOThread(this, i);
m_ioThreads.Add(ioThread);
m_slots[i] = ioThread.Mailbox;
ioThread.Start();
}

其余1024个slot保存的是socket对象的Mailbox,当socket还没使用是,slots保存的是null,占个位置,同时m_emptySlots。

//m_soltCount = 1 + 1 + 1024
for (int i = (int)m_slotCount - 1; >= (int)ios + 2; i--)
{
m_emptySlots.Push(i);
m_slots[i] = null;
}

创建SocketBase

无论是什么类型的Socket全都是在Context中进行创建或释放的。NetMQ中不同Socket都继承自SocketBase,在Context未中止且Socket未满时,会从m_emptySlots栈中Pop出一个未使用的指针。若创建失败,则重新加回到栈中,否则更新当前使用的Socket的集合加入该Socket并更新m_slots的Mailbox

//slot是当前socket在s_slots中的位置,也用于生成SocketBase的`ThreadId`
int slot = m_emptySlots.Pop();
// sid是生成并递增的唯一的socket ID,用于SocketBase创建MailBox命名用,并无实际其他作用。
int sid = Interlocked.Increment(ref s_maxSocketId);
s = SocketBase.Create(type, this, slot, sid);
if (s == null)
{
m_emptySlots.Push(slot);
return null;
}
m_sockets.Add(s);
m_slots[slot] = s.Mailbox;

释放SocketBase

Reaper要释放某个SocketBase时,最终会调用Context的DestroySocket方法。

tid = socket.ThreadId;
//重新加入到可用socket栈中
m_emptySlots.Push(tid);
//关闭连接
m_slots[tid].Close();
//清空引用
m_slots[tid] = null;
// 从当前使用socket集合移除
m_sockets.Remove(socket);
//若当前接收到中止信号且当前socket全部已释放时停止回收线程
if (m_terminating && m_sockets.Count == 0)
m_reaper.Stop();

缓存进程内通信Socket

NetMQ除了支持TCP以外还支持inproc(进程内通讯),ipc(进程间通讯),pgm和epgm(多路广播)等传输协议。

Context会用一个字典管理当前使用inpoc的socket。

当inpoc的socket进行绑定时会加入到字典缓存中。释放时会从字典缓存中移除。当使用inpoc协议连接时,增加当前绑定inpoc地址的连接数。

ZObject

ZObject是NetMQ的Session(状态),IOThread(IO线程),Repear(回收线程),Pipe(管道),Own(所属关系)对象的基类,它是包含2个信息,当前全局Context对象,以及当前对象处理的线程Id。所有socket最终都是继承自该对象。因此ZObject对象需要知道IO对象接收到不同命令时如何进行处理命令。

NetMQ中一共定义了一下的命令类型

public enum CommandType
{
// 发送给IO线程表示当前对象需要停止
Stop,
// 发送给IO线程表示当前对象需要注册到IO线程中
Plug,
// 将创建的对象Session的加入到当前Socket的所属集合中
Own,
// 附加engine到Session中
Attach,
// 建立session到Socket之间的管道,在握手之前调用inc_seqnum.
Bind,
// 通过写管道发送通知给读管道多少信息可读
ActivateRead,
// 通过读管道发送通知给写读管道多少信息可写
ActivateWrite,
// 创建一个新的管道后通过读管道发送给写管道
// 参数是管道类型,然而,他的目的地是私有的,因此我们必须用void指针, however,
Hiccup,
// 通过读管道发送到写管道告诉他中止所有管道
PipeTerm,
// 写管道对PipeTerm命令响应
PipeTermAck,
// 通过IO对象发送给socket请求终端IO对象
TermReq,
// 通过socket发送给IO对象他自己开始关闭
Term,
// 通过IO对象发送给socket让它知道已经关闭
TermAck,
// 将关闭套接字的所有权转移给回收线程.
Reap,
// 关闭套接字通知回收线程他已经释放
Reaped,
// 当所有socket都被释放通过回收线程发送给 term 线程
Done
}

根据不同命令类型进行处理,处理方式由具体的Socket子类去重载。

public void ProcessCommand(Command cmd)
{
switch (cmd.CommandType)
{
case CommandType.ActivateRead:
ProcessActivateRead();
break;
case CommandType.ActivateWrite:
ProcessActivateWrite((long)cmd.Arg);
break;
case CommandType.Stop:
ProcessStop();
break;
case CommandType.Plug:
ProcessPlug();
ProcessSeqnum();
break;
case CommandType.Own:
ProcessOwn((Own)cmd.Arg);
ProcessSeqnum();
break;
case CommandType.Attach:
ProcessAttach((IEngine)cmd.Arg);
ProcessSeqnum();
break;
case CommandType.Bind:
ProcessBind((Pipe)cmd.Arg);
ProcessSeqnum();
break;
case CommandType.Hiccup:
ProcessHiccup(cmd.Arg);
break;
case CommandType.PipeTerm:
ProcessPipeTerm();
break;
case CommandType.PipeTermAck:
ProcessPipeTermAck();
break;
case CommandType.TermReq:
ProcessTermReq((Own)cmd.Arg);
break;
case CommandType.Term:
ProcessTerm((int)cmd.Arg);
break;
case CommandType.TermAck:
ProcessTermAck();
break;
case CommandType.Reap:
ProcessReap((SocketBase)cmd.Arg);
break;
case CommandType.Reaped:
ProcessReaped();
break;
default:
throw new ArgumentException();
}
}

处理进程间通信协议

当创建进程间通信socket时,会调用ZObejct的RegisterEndpoint将socket对象加入到Context的使用inpoc协议的socket字段缓存中,而ZObject实际是调用Context的方法RegisterEndpoint,释放使用inpoc协议的socket和使用inpoc进行连接方式和RegisterEndpoint一样。

protected void RegisterEndpoint(String addr, Ctx.Endpoint endpoint)
{
//m_ctx是在ZObejct初始化是传进来的Context引用
m_ctx.RegisterEndpoint(addr, endpoint);
}

多个IO线程

默认的IO线程数量是1个,当然也可以使用多个IO线程并发去处理,因此当创建监听对象或创建连接时则需要进行负载均衡,平分到多个IO线程去处理,切换IO线程也是在Context中实现的。

protected IOThread ChooseIOThread(long affinity)
{
return m_ctx.ChooseIOThread(affinity);
}
public IOThread ChooseIOThread(long affinity)
{
//affinity表示哪些IO线程有资格,默认为0表示所有IO线程都可以处理。
if (m_ioThreads.Count == 0)
return null;
// Find the I/O thread with minimum load.
int minLoad = -1;
IOThread selectedIOThread = null;
for (int i = 0; i != m_ioThreads.Count; i++)
{
if (affinity == 0 || (affinity & (1L << i)) > 0)
{
//获取IO线程socket载入次数
int load = m_ioThreads[i].Load;
//这里对IO线程进行负载均衡
if (selectedIOThread == null || load < minLoad)
{
minLoad = load;
selectedIOThread = m_ioThreads[i];
}
}
}
return selectedIOThread;
}

总结

该篇介绍了Context和ZObject。NetMQ所有的socket对象创建,释放都离不开Context,由于Context内部对必要操作都加了锁,因此它是线程安全的。




微信扫一扫二维码关注订阅号杰哥技术分享

本文地址:https://www.cnblogs.com/Jack-Blog/p/6287458.html

作者博客:杰哥很忙

欢迎转载,请在明显位置给出出处及链接)

消息队列NetMQ 原理分析1-Context和ZObject的更多相关文章

  1. 消息队列NetMQ 原理分析2-IO线程和完成端口

    消息队列NetMQ 原理分析2-IO线程和完成端口 前言 介绍 目的 IO线程 初始化IO线程 Proactor 启动Procator线程轮询 处理socket 获取超时时间 从完成端口获取处理完的状 ...

  2. 消息队列NetMQ 原理分析3-命令产生/处理和回收线程

    消息队列NetMQ 原理分析3-命令产生/处理和回收线程 前言 介绍 目的 命令 命令结构 命令产生 命令处理 创建Socket(SocketBase) 创建连接 创建绑定 回收线程 释放Socket ...

  3. 消息队列NetMQ 原理分析4-Socket、Session、Option和Pipe

    消息队列NetMQ 原理分析4-Socket.Session.Option和Pipe 前言 介绍 目的 Socket 接口实现 内部结构 Session Option Pipe YPipe Msg Y ...

  4. 消息队列NetMQ 原理分析5-StreamEngine、Encord和Decord

    消息队列NetMQ 原理分析5-StreamEngine,Encord和Decord 前言 介绍 目的 StreamEngine 发送数据 接收数据 流程分析 Encoder V2Encoder V1 ...

  5. Netty构建分布式消息队列实现原理浅析

    在本人的上一篇博客文章:Netty构建分布式消息队列(AvatarMQ)设计指南之架构篇 中,重点向大家介绍了AvatarMQ主要构成模块以及目前存在的优缺点.最后以一个生产者.消费者传递消息的例子, ...

  6. PHP消息队列用法实例分析

    这篇文章主要介绍了PHP消息队列用法,结合实例形式分析了PHP消息队列用于Linux下进程间通信的相关技巧,需要的朋友可以参考下   该消息队列用于linux下,进程通信 队列状态信息:具体参考手册

  7. Rabbimq必备基础之对高级消息队列协议AMQP分析及Rabbitmq本质介绍

    MQ的一个产品... [消息队列] 1. MSMQ windows自带的一个服务... [petshop],message存放在文件系统中. 最原始的消息队列... [集群,消息确认,内存化,高可用, ...

  8. redis作为消息队列的原理

    Redis队列功能介绍 List 转:https://blog.csdn.net/cestlavieqiang/article/details/84197736 常用命令: Blpop删除,并获得该列 ...

  9. 自制MFC消息响应定位器+原理分析

    mfc里面有张消息映射表(MESSAGE_MAP),消息都是通过这张表来分发到相应函数里的. 这个是我自制的定位器,从vc6.0到现在的2013生成的mfc都可以用,全静态扫描并已处理动态基址. 下面 ...

随机推荐

  1. 打印Ibatis最后,SQL声明

    做项目时,满足这一需求.我们希望最终打印出在数据库运行SQL声明,这些都普遍遇到了一些一般性问题.我会去Appfuse,结果这次没有成功.它是有相关的配置,可是好像没实用.我也就没有深查下去.我想这种 ...

  2. sugarcrm关于邮件设置几个不好理解的地方

    陈沙克日志 把我的过程记录下来,以免以后忘了     2008-06-11 12:32 sugarcrm关于邮件设置几个不好理解的地方 最近看sugarcrm的使用,别的基本使用,没有什么问题,几天就 ...

  3. android 实现分享功能两种方法

    当我想做一个智能的记事本的时候,我就在尝试自己写一组分享功能.后来才知道,原来每个社交软件中都有自己的分享接口. 这就大大减少了我们的代码量了. 第一种方法:特点--简单 package com.ex ...

  4. 编写Windows Service 备忘

    项目需求要做一个定时扫表,将按条件查询到的数据插入或者更新到另一个数据表的需求,老大要求让用window service来做 因为以前没有做过,把这次的经历写出来.作为备忘. 1.什么是windows ...

  5. Azure China

    Azure China   Azure China (2) Azure China管理界面初探 摘要: <Windows Azure Platform 系列文章目录> 首先是Q&A ...

  6. Unity Container

    Unity Container中的几种注册方式与示例 2013-12-08 22:43 by 小白哥哥, 22 阅读, 0 评论, 收藏, 编辑 1.实例注册 最简单的注册方式就是实例注册,Unity ...

  7. Knockout 是什么?

    翻译:Knockout 轻松上手 - 1 Knockout 是什么? 原文名称:KnockoutJS Starter Knockout 是一个非常棒的脚本库,可是我发现许多人并不了解它,所以,思胜翻译 ...

  8. c#中的对象

      字段,属性,方法     对象初始化过程 如果没有继承,顺序如下: 静态变量 静态构造函数 非静态变量 非静态构造函数   如果类有基类,那么基类和子类的初始化顺序如下: 继承类静态成员变量初始化 ...

  9. dapper 扩展插件: Rainbow

    dapper 扩展插件: Rainbow dapper 是一个效率非常高的orm  框架 ,效率要远远大于 我们大微软的EF .    它只有一个类文件,非常之小. 1,首先下载dapper  这里下 ...

  10. CloudFormation

    亚马逊云服务之CloudFormation   亚马逊的Web Service其实包含了一套云服务.云服务主要分为三种: IaaS: Infrastructure as a service,基础设施即 ...