CF 316C2(Tidying Up-二分图最大边权)
4 seconds
256 megabytes
standard input
standard output
Smart Beaver is careful about his appearance and pays special attention to shoes so he has a huge number of pairs of shoes from the most famous brands of the forest. He's trying to handle his shoes carefully so that each pair stood side by side. But by the end of the week because of his very active lifestyle in his dressing room becomes a mess.
Smart Beaver from ABBYY is not only the brightest beaver in the area, but he also is the most domestically oriented. For example, on Mondays the Smart Beaver cleans everything in his home.
It's Monday morning. Smart Beaver does not want to spend the whole day cleaning, besides, there is much in to do and it’s the gym day, so he wants to clean up as soon as possible. Now the floors are washed, the dust is wiped off — it’s time to clean up in the dressing room. But as soon as the Smart Beaver entered the dressing room, all plans for the day were suddenly destroyed: chaos reigned there and it seemed impossible to handle, even in a week. Give our hero some hope: tell him what is the minimum number of shoes need to change the position to make the dressing room neat.
The dressing room is rectangular and is divided into n × m equal squares, each square contains exactly one shoe. Each pair of shoes has a unique number that is integer from 1 to , more formally, a square with coordinates (i, j) contains an integer number of the pair which is lying on it. The Smart Beaver believes that the dressing room is neat only when each pair of sneakers lies together. We assume that the pair of sneakers in squares (i1, j1) and (i2, j2) lies together if |i1 - i2| + |j1 - j2| = 1.
The first line contains two space-separated integers n and m. They correspond to the dressing room size. Next n lines contain m space-separated integers each. Those numbers describe the dressing room. Each number corresponds to a snicker.
It is guaranteed that:
- n·m is even.
- All numbers, corresponding to the numbers of pairs of shoes in the dressing room, will lie between 1 and .
- Each number from 1 to will occur exactly twice.
The input limits for scoring 30 points are (subproblem C1):
- 2 ≤ n, m ≤ 8.
The input limits for scoring 100 points are (subproblems C1+C2):
- 2 ≤ n, m ≤ 80.
Print exactly one integer — the minimum number of the sneakers that need to change their location.
2 3
1 1 2
2 3 3
2
3 4
1 3 2 6
2 1 5 6
4 4 5 3
4
The second sample.转换为2分图最大边权费用流。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MAXN (80*80+10)
#define MAXL (80+10)
#define MAXM (MAXL*MAXL*4+MAXN*4)
#define INF (2139062143)
int q[MAXN*8],d[MAXN],pr[MAXN],ed[MAXN],b[MAXN];
int edge[MAXM],next[MAXM],cost[MAXM],weight[MAXM],pre[MAXN],size=1;
void addedge(int u,int v,int w,int c)
{
edge[++size]=v;
weight[size]=w;
cost[size]=c;
next[size]=pre[u];
pre[u]=size;
}
void addedge2(int u,int v,int w,int c){addedge(u,v,w,c),addedge(v,u,0,-c);}
bool SPFA(int s,int t)
{
memset(d,127,sizeof(d));
memset(b,0,sizeof(b));
d[q[1]=s]=0;b[s]=1;
int head=1,tail=1;
while (head<=tail)
{
int now=q[head++];
Forp(now)
{
int &v=edge[p];
if (weight[p]&&d[now]+cost[p]<d[v])
{
d[v]=d[now]+cost[p];
if (!b[v]) b[v]=1,q[++tail]=v;
pr[v]=now,ed[v]=p;
}
}
b[now]=0;
}
return d[t]<d[0];
}
int CostFlow(int s,int t)
{
int totcost=0;
while (SPFA(s,t))
{
int flow=INF;
for(int x=t;x^s;x=pr[x]) flow=min(flow,weight[ed[x]]);
totcost+=flow*d[t];
for(int x=t;x^s;x=pr[x]) weight[ed[x]]-=flow,weight[ed[x]^1]+=flow;
}
return totcost;
}
int n,m,a[MAXL][MAXL];
int no(int i,int j){return (i-1)*m+j;}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
cin>>n>>m;
int s=n*m+1,t=n*m+2;
For(i,n) For(j,m) cin>>a[i][j];
For(i,n) For(j,m)
{
if (i+j&1) addedge2(s,no(i,j),1,0);
else addedge2(no(i,j),t,1,0);
if (j<m)
{
if (i+j&1) addedge2(no(i,j),no(i,j+1),1,a[i][j]!=a[i][j+1]);
else addedge2(no(i,j+1),no(i,j),1,a[i][j]!=a[i][j+1]);
}
if (i<n)
{
if (i+j&1) addedge2(no(i,j),no(i+1,j),1,a[i][j]!=a[i+1][j]);
else addedge2(no(i+1,j),no(i,j),1,a[i][j]!=a[i+1][j]);
}
}
cout<<CostFlow(s,t)<<endl;
return 0;
}
CF 316C2(Tidying Up-二分图最大边权)的更多相关文章
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- POJ2125 Destroying The Graph(二分图最小点权覆盖集)
最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...
- POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...
- POJ 2125 Destroying The Graph 二分图 最小点权覆盖
POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...
- HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)
题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割
思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...
- hdu 1829 &poj 2492 A Bug's Life(推断二分图、带权并查集)
A Bug's Life Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- poj 3308 Paratroopers(二分图最小点权覆盖)
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8954 Accepted: 2702 Desc ...
- HDU1569 方格取数(2) —— 二分图点带权最大独立集、最小割最大流
题目链接:https://vjudge.net/problem/HDU-1569 方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory L ...
随机推荐
- C/C++迭代器使用具体解释
迭代器是一种检查容器内元素并遍历元素的数据类型.能够替代下标訪问vector对象的元素. 每种容器类型都定义了自己的迭代器类型,如 vector: vector<int>::iterato ...
- 基于perl面向对象开发的微信机器人
<pre name="code" class="html">[root@wx03 lib]# ls -ltr total 40 -rw-r--r-- ...
- db2迁移至oracle过程中的问题
(1)时间日期问题: db2中‘2013-07-17 00:02:55’ oracle中to_date('2013-07-17 00:02:55' , 'YYYY-MM-DD HH24:MI:SI ...
- Android Gradle Plugin指南(六)——高级构建定制
原文地址:http://tools.android.com/tech-docs/new-build-system/user-guide#TOC-Advanced-Build-Customization ...
- Qt之开机自启动及拥有管理员权限
源地址:http://blog.sina.cn/dpool/blog/s/blog_a6fb6cc90101feia.html Windows开机自启动的程序很多,包括系统软件.杀毒软件.一些其他安装 ...
- STM32的FSMC总线复用调试笔记
调试FSMC总线复用模式时主要遇到以下几点: 1.寄存器的配置,首先注意使能地址数据复用,其次要存储器类型选择FSMC_MemoryType_NOR,否则出现不了NADV信号. FSMC_NORSRA ...
- Mac上利用Eclipse编译Cocos2d-x
目前使用较多的Cocos2d-x开发平台是XCode,应该是由于大部分Cocos2d-x开发者都是iOS开发出生.但是当我们将XCode开发的Cocos2d-x工程发布Android版本时,每次都需要 ...
- ASP.NET - 禁用ViewState
默认情况下,ViewState是被启用的,比如提交表单后,表单中输入的值会自动保留.但是如果不需要保留,也可以将其禁用,这样可以节省资源. 下面3种方式就可以分别禁用某一个控件.某一个页面和整个应 ...
- faith的23堂课:培养良好的工作方法与做事风格
目标:通过每天一点的学习和实践,逐步形成好的做事风格和工作生活习惯. 方式:每天教一点,实践一点. 第一课 计划与总结,工作日志,戴明环 第二课 目的性:搞清楚,你每个行为的目的 第三课 目标管理,调 ...
- J2EE SSH学习(二)安装Eclipse插件和第一个Eclipse项目
(一)安装Eclipse插件 Eclipse有很多功能很强大的插件,我现在作为一个菜鸟只知道插件的功能通常都很牛叉实用或者很有趣,那么该怎么安装Eclipse插件呢? 我使用的是Eclipse 4.3 ...