三分套三分,挺神奇的。。。每次找到,每个传送带的上下两个三等分点,下面那个小,则一定有更优的在中间。

 #include <iostream>
#include <cstdio>
#include <cmath>
#define eps 1e-3
using namespace std;
int ax,ay,bx,by,cx,cy,dx,dy;
int r,q,p;
inline double dis(double a,double b,double c,double d)
{
return sqrt(pow(a-c,)+pow(b-d,));
}
inline double cal(double x,double y)
{
double x1,y1,x2,y2,t1,t2;
double lx=cx,ly=cy,rx=dx,ry=dy;
while (fabs(rx-lx)>eps || fabs(ry-ly)>eps)
{
x1=lx+(rx-lx)/; y1=ly+(ry-ly)/;
x2=lx+(rx-lx)/*; y2=ly+(ry-ly)/*;
t1=dis(ax,ay,x,y)/p+dis(x,y,x1,y1)/r+dis(x1,y1,dx,dy)/q;
t2=dis(ax,ay,x,y)/p+dis(x,y,x2,y2)/r+dis(x2,y2,dx,dy)/q;
if (t1>t2) lx=x1,ly=y1;
else rx=x2,ry=y2;
}
return dis(ax,ay,x,y)/p+dis(x,y,lx,ly)/r+dis(lx,ly,dx,dy)/q;
}
int main()
{
scanf("%d%d%d%d",&ax,&ay,&bx,&by);
scanf("%d%d%d%d",&cx,&cy,&dx,&dy);
scanf("%d%d%d",&p,&q,&r);
double x1,y1,x2,y2,t1,t2;
double lx=ax,ly=ay,rx=bx,ry=by;
while (fabs(rx-lx)>eps || fabs(ry-ly)>eps)
{
x1=lx+(rx-lx)/; y1=ly+(ry-ly)/;
x2=lx+(rx-lx)/*; y2=ly+(ry-ly)/*;
t1=cal(x1,y1); t2=cal(x2,y2);
if (t1>t2) lx=x1,ly=y1;
else rx=x2,ry=y2;
}
printf("%.2lf\n",cal(lx,ly));
return ;
}

Description

在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

Input

输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R

Output

输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

Sample Input

0 0 0 100
100 0 100 100
2 2 1

Sample Output

136.60

HINT

对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10

Source

【BZOJ1857】[Scoi2010]传送带 三分法的更多相关文章

  1. BZOJ1857 Scoi2010 传送带 【三分】

    BZOJ1857 Scoi2010 传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P ...

  2. [SCOI2010]传送带 三分法

    [SCOI2010]传送带 LG传送门 三分法模板. 关于为什么可以三分,我选择感性理解,有人证明了,总之我是懒得证了. 假设路径是\(A \to E \to F \to D\),\(E\)和\(F\ ...

  3. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  4. BZOJ1857 [Scoi2010]传送带 【三分法】

    题目链接 BZOJ1857 题解 画画图就发现实际上是在\(AB\)上和\(CD\)上分别选两个点\(E\),\(F\),使得\(t_{AE} + t_{EF} + t_{FD}\)最小 然后猜想到当 ...

  5. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  6. BZOJ1857[SCOI2010]传送带

    题目大意:平面上两条线段,一个人从一条线段的一个点到另一条线段的一个点,最小时间是多少 路径肯定是在一条线段上走一段,然后走平面,最后再走另一条线段,那么需要确定的就是在两条线段上走的距离,其他暴力算 ...

  7. [BZOJ1857][SCOI2010]传送带-[三分]

    Description 传送门 Solution 三分套三分.代码简单但是证明苦兮兮.. 假如我们在AB上选了一个点G,求到该点到D的最小时间. 图中b与CD垂直.设目前从G到D所耗时间最短的路径为G ...

  8. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  9. 【BZOJ-1857】传送带 三分套三分

    1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 1077  Solved: 575[Submit][Status][ ...

随机推荐

  1. 自动布局报错(两条连线冲突):Unable to simultaneously satisfy constraints

    这个报错有些长: Unable to simultaneously satisfy constraints.    Probably at least one of the constraints i ...

  2. 各大浏览器内核特性及对应的Browserhacks举例

    1.浏览器内核指的是什么? 简化的浏览器=用户界面+渲染引擎+js解析引擎+数据存储+网络部件 而通常所说的浏览器内核指的是页面渲染引擎(rendering engine). 2.渲染引擎 The r ...

  3. MyBatis:统计数量

    dao: /** * 统计商家的案例数量 * * @param shopId * @return */ long countByShopId(Long shopId); @Override publi ...

  4. gnuWin32-mini-2016.10.30

    2016-10-28 04:48 1,017,856 awk.exe ver 4.1.4 2016-10-29 00:26 77,312 bc.exe ver 1.06 2016-10-30 01:4 ...

  5. 获取本地的IP地址(内网)

    方法一 public static String getLocalIpAddress() { try { for (Enumeration<NetworkInterface> en = N ...

  6. CentOS7 睡眠 休眠 关机 电源

    设置装有 CentOS7 的笔记本合盖后黑屏进入睡眠模式 systemd 能够处理某些电源相关的 ACPI事件,你可以通过从 /etc/systemd/logind.conf 以下选项进行配置: Ha ...

  7. 关于display:none 和visibility:hidden 的区别

    1.占据空间 :none 隐藏后不占据空间 visibility占据空间 2.回流与渲染:none产生回流与渲染 ? 可以通过oprea中的Profiler 工具测试. 关于回流的详细介绍:http: ...

  8. APM程序分析-AC_WPNav.cpp

    APM程序分析 主程序在ArduCopter.cpp的loop()函数. /// advance_wp_target_along_track - move target location along ...

  9. jQuery对象与dom对象相互转换

    核心提示:jquery选择器得到的jquery对象和标准的 javascript中的document.getElementById()取得的dom对象是两种不同的对象类型,一般情况下,如S('#id' ...

  10. RxJava 学习笔记(一)

    最近Android6.0的权限问题,要把之前的APP进行改造,用到了RxPermission框架!之前了解过RXJAVA,但是由于之前项目一直没有使用这个框架,所以也就一直搁置了.正好Rxpermis ...