BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description
Input
第一行为两个整数n,k。
Output
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
Sample Input
Sample Output
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000
Solution
很容易设计出状态f[i][j]表示i个数有j个逆序对的方案数
假设当前放了i-1个数,该放第i个数了。
因为第i个数是最大的,所以将其放到队列最右边可以额外产生0个逆序对,放到最左边可额外产生i-1个
故放第i个数可以增加0~i-1个逆序对
那么f[i][j]=sigma(f[i-1][k]),其中max(0,j-i+1)<=k<=j
很容易写出一个n^3的暴力
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000+10)
using namespace std;
int f[N][N],n,m;
int main()
{
scanf("%d%d",&n,&m);
f[][]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=max(,j-i+); k<=j; ++k)
(f[i][j]+=f[i-][k])%=;
printf("%d",f[n][m]);
}
然而n^3暴力肯定过不了1000的。不过有90。
我们发现暴力的第三重循环只是查询f[i-1][]的一段,
我们只需要一边DP一边计算前缀和,那么就可以用前缀和优化掉第三重循环了。
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000+10)
using namespace std;
int f[N][N],sum[N][N],n,m;
int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; ++i)
sum[][i]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
{
f[i][j]=(j-i>=) ? (sum[i-][j]-sum[i-][j-i]+)% : sum[i-][j];
sum[i][j]=(sum[i][j-]+f[i][j])%;
}
printf("%d",f[n][m]);
}
BZOJ2431:[HAOI2009]逆序对数列(DP,差分)的更多相关文章
- [bzoj2431][HAOI2009][逆序对数列] (dp计数)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [BZOJ2431][HAOI2009]逆序对数列(DP)
从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- 【bzoj2431】[HAOI2009]逆序对数列 dp
题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...
- bzoj2431: [HAOI2009]逆序对数列(DP)
f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...
- bzoj2431: [HAOI2009]逆序对数列
dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...
随机推荐
- SSRS 通过Customer Code访问Dataset
A dataset in Reporting Services is not the same type of object as an ADO.Net dataset. A report data ...
- ie6的display:inline-block实现
摘抄自原文链接 简单来说display:inline-block,就是可以让行内元素或块元素变成行内块元素,可以不float就能像块级元素一样设置宽高,又能像行内元素一样轻松居中. 在ie6中给div ...
- .Net程序员玩转Android系列之三~快速上手
快速环境搭建和Hello World 第一步:JAVA SDK(JDK)的安装: 官方下载地址: http://www.oracle.com/technetwork/java/javase/downl ...
- js打印去掉页眉页脚
<style type="text/css" media="print"> @page /* 实现代码 */ { size: auto; /* au ...
- Oracle数据库查看已添加的索引和创建索引
/** *查看目标表中已添加的索引 * */ --在数据库中查找表名 select * from user_tables where table_name like 'tablename%'; --查 ...
- Oracle查询表名超过长度限制的表
SELECT T.table_name, LENGTH(TRIM(T.table_name)) FROM user_tables t ORDER BY LENGTH(TRIM(t.table_name ...
- 关于利用MQ实现分布式事务的想法【转】
转自:https://www.jianshu.com/p/bafb09954f18 假设:消息服务不丢消息 场景 服务A 服务B 服务C 消息服务Q 伪代码 服务A中 transaction{ A本地 ...
- 设置$.getJSON同步执行的笨方法
$.ajaxSettings.async=false; $.getJSON("action/logon_checkAcc.action", function(json){ aler ...
- Hello Activemq
0. 如果永远是localhost 可能一直low下去 1.下载安装 activemq 1.1 从官网下载activemq.tar.gz 并上传(rz)到linux系统 并解压 tar zxvf /* ...
- 怎样修改织梦网站的favicon图标
现在很多的网站浏览器栏上都有favicon图标,比如百度,大家用织梦做好网站后,可能发现自己的网站favicon图标默认的不好看,如何修改织梦网站的favicon导航图标呢,很多人肯定有过困惑,小编遇 ...