字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

(完)

字符串匹配KMP算法(转自阮一峰)的更多相关文章

  1. 字符串匹配KMP算法详解

    1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有比较详细的通俗易懂的讲解,另一方面也怪自己没有沉下心来研究.最近在leetcode上又遇见字符串匹配的题目,以此 ...

  2. 字符串匹配KMP算法

    1. 字符串匹配的KMP算法 2. KMP算法详解 3. 从头到尾彻底理解KMP

  3. 字符串匹配--kmp算法原理整理

    kmp算法原理:求出P0···Pi的最大相同前后缀长度k: 字符串匹配是计算机的基本任务之一.举例,字符串"BBC ABCDAB ABCDABCDABDE",里面是否包含另一个字符 ...

  4. 字符串匹配KMP算法的C语言实现

    字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD" ...

  5. 字符串匹配KMP算法的讲解C++

    转自http://blog.csdn.net/starstar1992/article/details/54913261 也可以参考http://blog.csdn.net/liu940204/art ...

  6. 【Luogu P3375】字符串匹配KMP算法模板

    Luogu P3375 模式串:即题目中的S2所代表的意义 文本串:即题目中的S1所代表的意义 对于字符串匹配,有一种很显然的朴素算法:在S1中枚举起点一位一位匹配,失配之后起点往后移动一位,从头开始 ...

  7. 字符串匹配——KMP算法

    关于KMP算法的分析,我觉得这两篇博客写的不错: http://www.ruanyifeng.com/blog/2013/05/Knuth–Morris–Pratt_algorithm.html ht ...

  8. 字符串匹配—KMP算法

    KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特-莫里斯-普拉特操作(简称KMP算法).KMP算法的核心是利用匹配失败后 ...

  9. <字符串匹配>KMP算法为何比暴力求解的时间复杂度更低?

    str表示文本串,m表示模式串; str[i+j] 和 m[j] 是正在进行匹配的字符; KMP的时间复杂度是O(m+n)  ,  暴力求解的时间复杂度是O(m*n) KMP利用了B[0:j]和A[i ...

随机推荐

  1. [转]vs2012 + web api + OData + EF + MYsql 开发及部署

    本文转自:http://www.cnblogs.com/liumang/p/4403436.html 先说下我的情况,b/s开发这块已经很久没有搞了,什么web api .MVC.OData都只是听过 ...

  2. gulp入门详情

    gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成:使用她,我们不仅可以很愉快的编写代码,而且大 ...

  3. 跨平台 GUI可视化 网络调试工具

    mNetAssisthttp://blog.chinaunix.net/uid-21977056-id-4310527.htmlhttps://github.com/busyluo/mNetAssis ...

  4. Tomcat服务器配置和使用(三)

    https连接器 明白了互联网上的加密原理之后,下面来看看浏览器与服务器交互时,浏览器想将数据加密后再发送给服务器,那么该怎么做呢?服务器首先要向浏览器出示一份数字证书,浏览器看到数字证书后,就可以使 ...

  5. Springboot事务使用与回滚

    Springboot中事务的使用: 1.启动类加上@EnableTransactionManagement注解,开启事务支持(其实默认是开启的). 2.在使用事务的public(只有public支持事 ...

  6. CSS之after与before的content 和 attr 配合使用

    content 和 attr 配合使用 如果你不想把content内容在CSS里写死,那你可以使用attr表达式来从页面元素中动态的获取内容: /* <div data-line="1 ...

  7. JavaScript实现邮箱后缀提示功能

    先来个基础的 需求 根据下面需求实现如示意图所示的邮箱输入提示功能,注意,根据要求只需实现下面功能 当用户没有任何输入时,提示框消失 当用户输入字符后,显示提示框,并且把用户输入的内容自动拼上邮箱后缀 ...

  8. linux 下解决git clone报错

    解决报错:error: The requested URL returned error: 401 Unauthorized while accessing   问题报错:error: The req ...

  9. 鼠标移动事件(跟随鼠标移动的div)

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  10. C语言——单链表初始化、求表长、读表元素、插入元素

    头文件Linear.h // 单链表的类型定义 typedef struct node { int data; // 数据域 struct node *next; // 指针域 }Node, *Lin ...