树的重心,树形$dp$,背包。

树的重心有两个充分必要条件:

$1$.某树有两个重心$a$,$b$ $<=>$ $a$与$b$相邻,断开$a$与$b$之间的边之后,两个联通分量内的点的个数相同。

$2$.某树有一个重心$a$ $<=>$ 以$a$为根的树,去掉a之后,剩下的联通分量,除去节点个数最多的联通分量后,剩余的联通分量节点个数之和大于等于最大的联通分量的节点个数。

因此,可以先计算出初始树的重心,分两种情况讨论。

如果有两个重心$a$,$b$,那么,我们需要计算出断开$a$,$b$之间的边,以$a$为根的树以及以$b$为根的树中包含$x$个节点的树有几种,然后枚举$x$两边相乘求和就是答案了。

如果只有一个重心$a$,这种情况比两个重心的复杂一点,需要计算以$a$为根的树有多少种满足充要条件$2$,先要计算出以$a$的儿子为根的树中包含$x$个节点的树有几种,然后再用背包去算一下反面的情况,总的方案减去反面的就是答案。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0);
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar();
x = ;
while(!isdigit(c)) c = getchar();
while(isdigit(c))
{
x = x * + c - '';
c = getchar();
}
} int T,n;
int mod=;
int dp[][];
int c[],mx[],k[],f[];
vector<int>tmp[],t[],zx; void init()
{
memset(dp,,sizeof dp);
memset(c,,sizeof c);
memset(mx,,sizeof mx);
memset(f,,sizeof f);
for(int i=;i<=n;i++) tmp[i].clear();
for(int i=;i<=n;i++) t[i].clear();
zx.clear();
} void D(int x)
{
f[x]=;
for(int i=;i<tmp[x].size();i++)
{
if(f[tmp[x][i]]) continue;
t[x].push_back(tmp[x][i]);
D(tmp[x][i]);
}
} void F(int x)
{
for(int i=;i<t[x].size();i++)
{
F(t[x][i]);
mx[x]=max(mx[x],c[t[x][i]]);
c[x]=c[x]+c[t[x][i]];
}
c[x]++;
} void G(int x)
{
f[x]=;
for(int i=;i<tmp[x].size();i++)
{
if(f[tmp[x][i]]) continue;
if(zx.size()==&&tmp[x][i]==zx[]) continue;
t[x].push_back(tmp[x][i]);
G(tmp[x][i]);
}
} void DP(int x)
{
dp[x][]=; int h[],g[];
memset(h,,sizeof h); memset(g,,sizeof g);
g[]=;
for(int i=;i<t[x].size();i++)
{
DP(t[x][i]);
for(int j=;j<=c[x]+c[t[x][i]];j++) h[j]=;
for(int p1=c[x];p1>=;p1--)
for(int p2=c[t[x][i]];p2>=;p2--)
h[p1+p2]=(h[p1+p2]+g[p1]*dp[t[x][i]][p2]%mod)%mod;
for(int j=;j<=c[x]+c[t[x][i]];j++) g[j]=h[j]; c[x]=c[x]+c[t[x][i]];
}
c[x]++;
for(int i=;i<=;i++) dp[x][i]=g[i-];
} int main()
{
scanf("%d",&T); int cas=;
while(T--)
{
scanf("%d",&n);
init();
for(int i=;i<=n-;i++)
{
int x,y; scanf("%d%d",&x,&y);
tmp[x].push_back(y);
tmp[y].push_back(x);
}
D(); F(); for(int i=;i<=n;i++) k[i]=max(mx[i],n-c[i]);
int mn=; for(int i=;i<=n;i++) mn=min(mn,k[i]);
for(int i=;i<=n;i++) if(k[i]==mn) zx.push_back(i); for(int i=;i<=n;i++) t[i].clear();
memset(f,,sizeof f);
G(zx[]); if(zx.size()==) G(zx[]); memset(c,,sizeof c);
DP(zx[]); if(zx.size()==) DP(zx[]); printf("Case %d: ",cas++); int ans=;
if(zx.size()==)
{
int h[],g[]; int fm=;
for(int i=;i<t[zx[]].size();i++)
{
memset(h,,sizeof h); memset(g,,sizeof g); g[]=;
int a=;
for(int j=;j<t[zx[]].size();j++)
{
if(i==j) continue;
for(int w=;w<=a+c[t[zx[]][j]];w++) h[w]=;
for(int p1=a;p1>=;p1--)
for(int p2=c[t[zx[]][j]];p2>=;p2--)
h[p1+p2]=(h[p1+p2]+g[p1]*dp[t[zx[]][j]][p2]%mod)%mod;
a=a+c[t[zx[]][j]];
for(int j=;j<=;j++) g[j]=h[j];
} for(int j=;j<=c[t[zx[]][i]];j++)
for(int w=;w<j;w++)
fm=(fm+dp[t[zx[]][i]][j]*g[w]%mod)%mod;
}
for(int i=;i<=n;i++) ans=(ans+dp[zx[]][i])%mod;
printf("%d\n",(ans-fm+mod)%mod); }
else
{
for(int i=;i<=;i++)
ans=(ans+dp[zx[]][i]*dp[zx[]][i]%mod)%mod;
printf("%d\n",ans);
} }
return ;
}

HDU 4863 Centroid of a Tree的更多相关文章

  1. hdu 4912 Paths on the tree(树链拆分+贪婪)

    题目链接:hdu 4912 Paths on the tree 题目大意:给定一棵树,和若干个通道.要求尽量选出多的通道,而且两两通道不想交. 解题思路:用树链剖分求LCA,然后依据通道两端节点的LC ...

  2. (hdu)5423 Rikka with Tree (dfs)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5423 Problem Description As we know, Rikka is p ...

  3. 【hdu 6161】Big binary tree(二叉树、dp)

    多校9 1001 hdu 6161 Big binary tree 题意 有一个完全二叉树.编号i的点值是i,操作1是修改一个点的值为x,操作2是查询经过点u的所有路径的路径和最大值.10^5个点,1 ...

  4. HDU 6191 Query on A Tree(可持久化Trie+DFS序)

    Query on A Tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Othe ...

  5. hdu 5534 (完全背包) Partial Tree

    题目:这里 题意: 感觉并不能表达清楚题意,所以 Problem Description In mathematics, and more specifically in graph theory, ...

  6. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  7. Hdu.1325.Is It A Tree?(并查集)

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. hdu 1325 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. HDU - 5156 Harry and Christmas tree

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5156 题意 : 给一颗编号为1-n的以1为根的树, 已知有m个颜色的礼物分布在某些节点上(同一节点 ...

随机推荐

  1. 51Nod 1091 线段重叠 | 贪心

    Input示例 5 1 5 2 4 2 8 3 7 7 9 Output示例 4 first try: O(n^2):二层循环,减法取最大 后五个time limit exceeded #includ ...

  2. Divergent Change(发散式变化)---要重构的信号

    “ 当你看着一个类说,呃,如果新加入一个数据库,我必须修改这三个函数:如果新出现一种金融工具,我必须修改这四个函数.那么,此时也许将这个类分成两个会更好,这么一来每个对象就可以只因一种变化而需要修改. ...

  3. bzoj 4034: [HAOI2015]树上操作——树链剖分

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  4. 【51NOD-0】1011 最大公约数GCD

    [算法]欧几里德算法 #include<cstdio> int gcd(int a,int b) {?a:gcd(b,a%b);} int main() { int a,b; scanf( ...

  5. springmvc4处理get和post请求中文乱码问题

    1.在springmvc4处理get和post请求的问题 参看大牛博客连接:https://blog.csdn.net/qq_41665356/article/details/80234392

  6. MongoDB安装配置及使用

    1.安装配置:https://www.cnblogs.com/ymwangel/p/5859453.html 2.使用 from pymongo import MongoClient #连接 conn ...

  7. bzoj 1052 dfs

    首先可以二分答案,将最优性问题转化为判定性问题. 对于二分到的边长,我们可以把所有的点看成一个大的矩形,这个矩形为包括所有点的最小矩形,那么贪心的想,3个正方形,第一个肯定放在这个矩形其中的一角,然后 ...

  8. win10以前连接过的wifi密码怎么查看

    右键点击开始,在菜单中选择打开命令提示符,以管理员的权限打开.  然后输入命令netsh wlan show profile显示以前此电脑连接过的所有WIFI记录配置信息.    确定要查看的WIFI ...

  9. HashMap 、LinkedHashMap、HashTable、TreeMap 和 Properties 的区别

    HashMap 1.线程不安全: 2.允许null value 和 null key: 3.访问效率比较高: 4.Java1.2引进的Map接口的一个实现: 5.轻量级: 6.根据键的HashCode ...

  10. C++学习之路(二):引用

    (1)引用是变量的别名 引用的基本定义格式:类型 &引用名 = 变量名 例如:int a = 1; int &b = a,这里b是a的别名,b与a都指向了同一块内存单元. 对于引用而言 ...