洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释
P3384 【模板】树链剖分
题目描述
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:
操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z
操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和
操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z
操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和
输入输出格式
输入格式:
第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。
接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。
接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)
接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:
操作1: 1 x y z
操作2: 2 x y
操作3: 3 x z
操作4: 4 x
输出格式:
输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模)
输入输出样例
说明
时空限制:1s,128M
数据规模:
对于30%的数据: N \leq 10, M \leq 10N≤10,M≤10
对于70%的数据: N \leq {10}^3, M \leq {10}^3N≤103,M≤103
对于100%的数据: N \leq {10}^5, M \leq {10}^5N≤105,M≤105
( 其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233 )
样例说明:
树的结构如下:
各个操作如下:
故输出应依次为2、21(重要的事情说三遍:记得取模)
题意很直接,直接模板题。
写了两天,最后发现,加边时add(v,u)的括号写成[ ]了,可真是捞啊。
写了注释。
代码:
//洛谷-P3384 【模板】树链剖分-树链剖分
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll; const double PI=acos(-1.0);
const double eps=1e-;
//const ll mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=2e5+;
const int maxm=+;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 int sum[maxn<<],lazy[maxn<<];
int n,m,r,mod;
int head[maxn],tot; int son[maxn],tid[maxn],fa[maxn],cnt,dep[maxn],siz[maxn],top[maxn];
int w[maxn],wt[maxn]; struct Edge{
int to,next;
}edge[maxn]; void add(int u,int v)//链式前向星存边
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
} void init()//初始化
{
memset(head,-,sizeof(head));
tot=;cnt=;
} //线段树部分
void pushup(int rt)//上传lazy标记
{
sum[rt]=(sum[rt<<]+sum[rt<<|])%mod;
} void pushdown(int rt,int m)//下放lazy标记
{
if(lazy[rt]){
lazy[rt<<]+=lazy[rt];
lazy[rt<<|]+=lazy[rt];
sum[rt<<]+=(m-(m>>))*lazy[rt],sum[rt<<]%=mod;
sum[rt<<|]+=(m>>)*lazy[rt],sum[rt<<|]%=mod;
lazy[rt]=;
}
} void build(int l,int r,int rt)
{
lazy[rt]=;
if(l==r){
sum[rt]=wt[l],sum[rt]%=mod;//新的编号点权
return ;
} int m=(l+r)>>;
build(lson);
build(rson);
pushup(rt);
} void update(int L,int R,int c,int l,int r,int rt)//区间更新
{
if(L<=l&&r<=R){
lazy[rt]+=c;
sum[rt]+=c*(r-l+),sum[rt]%=mod;
return ;
} pushdown(rt,r-l+);
int m=(l+r)>>;
if(L<=m) update(L,R,c,lson);
if(R> m) update(L,R,c,rson);
pushup(rt);
} int query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R){
return sum[rt];
} int ret=;
pushdown(rt,r-l+);
int m=(l+r)>>;
if(L<=m) ret+=query(L,R,lson),ret%=mod;
if(R> m) ret+=query(L,R,rson),ret%=mod;
return ret;
} //树链剖分部分
void dfs1(int u,int father)
{
siz[u]=;//记录每个节点子树大小
fa[u]=father;//标记节点的父亲
dep[u]=dep[father]+;//标记深度
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(v==father) continue;//如果连接的是当前节点的父亲节点,则不处理
dfs1(v,u);
siz[u]+=siz[v];//直接子树节点相加,当前节点的size加上子节点的size
if(siz[v]>siz[son[u]]){//如果没有设置过重节点son或者子节点v的size大于之前记录的重节点son,进行更新,保存重儿子
son[u]=v;//标记u的重儿子为v
}
}
} void dfs2(int u,int tp)
{
top[u]=tp;//标记每个重链的顶端
tid[u]=++cnt;//每个节点剖分以后的新编号(dfs的执行顺序)
wt[cnt]=w[u];//新编号的对应权值
if(!son[u]) return ;//如果当前节点没有处在重链上,则不处理,否则就将这条重链上的所有节点都设置成起始的重节点
dfs2(son[u],tp);//搜索下一个重儿子
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(v==fa[u]||v==son[u]) continue;//处理轻儿子,如果连接节点不是当前节点的重节点并且也不是u的父节点,则将其的top设置成自己,进一步递归
dfs2(v,v);//每一个轻儿子都有一个从自己开始的链
}
} void update_path(int x,int y,int k)//路径更新
{
k%=mod;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);//使x深度较大
update(tid[top[x]],tid[x],k,,n,);
x=fa[top[x]];
} if(dep[x]>dep[y]) swap(x,y);//使x深度较小
update(tid[x],tid[y],k,,n,);
} int getsum_path(int x,int y)//路径求和
{
int ans=;
while(top[x]!=top[y]){//当两个点不在同一条链上
if(dep[top[x]]<dep[top[y]]) swap(x,y);//使x深度较大
ans+=query(tid[top[x]],tid[x],,n,),ans%=mod;
x=fa[top[x]];//x跳到x所在链顶端的这个点的上面一个点
} if(dep[x]>dep[y]) swap(x,y);//当两个点处于同一条链,使x深度较小
ans+=query(tid[x],tid[y],,n,),ans%=mod;
return ans;
} void update_subtree(int x,int k)//子树更新
{
update(tid[x],tid[x]+siz[x]-,k,,n,);//子树区间右端点为tid[x]+siz[x]-1
} int getsum_subtree(int x)//子树求和
{
return query(tid[x],tid[x]+siz[x]-,,n,);
} int main()
{
scanf("%d%d%d%d",&n,&m,&r,&mod);
init();
for(int i=;i<=n;i++)
scanf("%d",&w[i]);//点权
for(int i=;i<=n-;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs1(r,);//根节点
dfs2(r,r);
build(,n,);
while(m--){
int op,x,y,z;
scanf("%d",&op);
if(op==){
scanf("%d%d%d",&x,&y,&z);
update_path(x,y,z);
}
else if(op==){
scanf("%d%d",&x,&y);
printf("%d\n",getsum_path(x,y));
}
else if(op==){
scanf("%d%d",&x,&z);
update_subtree(x,z);
}
else if(op==){
scanf("%d",&x);
printf("%d\n",getsum_subtree(x));
}
}
return ;
}
溜了溜了。。。
洛谷 P3384 【模板】树链剖分-树链剖分(点权)(路径节点更新、路径求和、子树节点更新、子树求和)模板-备注结合一下以前写的题目,懒得写很详细的注释的更多相关文章
- 洛谷p3384【模板】树链剖分题解
洛谷p3384 [模板]树链剖分错误记录 首先感谢\(lfd\)在课上调了出来\(Orz\) \(1\).以后少写全局变量 \(2\).线段树递归的时候最好把左右区间一起传 \(3\).写\(dfs\ ...
- 树链剖分模板(洛谷P3384)
洛谷P3384 #include <bits/stdc++.h> #define DBG(x) cerr << #x << " = " < ...
- 洛谷 P3384 【模板】树链剖分
树链剖分 将一棵树的每个节点到它所有子节点中子树和(所包含的点的个数)最大的那个子节点的这条边标记为"重边". 将其他的边标记为"轻边". 若果一个非根节点的子 ...
- [洛谷P3384] [模板] 树链剖分
题目传送门 显然是一道模板题. 然而索引出现了错误,狂wa不止. 感谢神犇Dr_J指正.%%%orz. 建线段树的时候,第44行. 把sum[p]=bv[pos[l]]%mod;打成了sum[p]=b ...
- 树剖模板(洛谷P3384 【模板】树链剖分)(树链剖分,树状数组,树的dfn序)
洛谷题目传送门 仍然是一个板子. 不过蒟蒻去学了一下BIT维护区间修改区间求和,常数果真十分优秀 设数列为\(a_i\),差分数组\(d_ i=a_ i-a_ {i-1}\),前缀和\(s_i=\su ...
- 洛谷P3384 树链剖分
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x ...
- 树链剖分( 洛谷P3384 )
我们有时候遇到这样一类题目,让我们维护树上路径的某些信息,这个时候发现我们无法用线段树或者树状数组来维护这些信息,那么我们就有着一种新的数据结构,树剖:将一棵树划分成若干条链,用数据结构去维护每条链, ...
- 洛谷 P3384树链剖分 题解
题面 挺好的一道树剖模板: 首先要学会最模板的树剖: 然后这道题要注意几个细节: 初始化时,seg[0]=1,seg[root]=1,top[root]=root,rev[1]=root; 在线段树上 ...
- 洛谷 P4292 - [WC2010]重建计划(长链剖分+线段树)
题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) ...
随机推荐
- git版本回退与撤销操作
场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout -- file. 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步, ...
- 裸机配置C语言运行环境
C语言程序的执行需要栈的支持.部分soc未初始化栈的情况下调用C语言程序会发生错误. start.S中一共配置了看门狗,svc栈,icache. 在x210中看门狗默认关闭,svc栈默认开启,icah ...
- C++ 指针常见用法小结
1. 概论 2.指针基础 3. 指针进阶 4. 一维数组的定义与初始化 5. 指针和数组 6. 指针运算 7. 多维数组和指针 8. 指针形参 9. 数组形参 10. 返回指针和数组 11. 结语 ...
- uva 1506 Largest Rectangle in a Histogram
Largest Rectangle in a Histogram http://acm.hdu.edu.cn/showproblem.php?pid=1506 Time Limit: 2000/100 ...
- Linux修改用户密码
1. root修改自己 # passwd 2. root修改别人 # passwd oracle //修改oracle的密码
- Jenkenis报错:该jenkins实例似乎已离线[转]
解决方法: 安装插件那个页面,就是提示你offline的那个页面,不要动.然后打开一个新的tab,输入网址http://localhost:8080/pluginManager/advanced. 这 ...
- 解决SpringSecurity限制iframe引用页面的问题
使用Spring Security的过程中,需要使用iframe来引入其他域的页面,页面会报X-Frame-Options的错误,试了好几种方法一直未能很好的解决这个问题. 这里涉及到Spring S ...
- ES6新增的let与const
1.const 声明常量,一旦声明必须立马赋值,否则报错 const PI = 3.14 const PI; //报错:Uncaught SyntaxError: Missing initialize ...
- Linux_信号与信号量【转】
转自:http://blog.csdn.net/sty23122555/article/details/51470949 信号: 信号机制是类UNIX系统中的一种重要的进程间通信手段之一.我们经常使用 ...
- centos_7.1.1503_src_1
http://vault.centos.org/7.1.1503/os/Source/SPackages/ 389-ds-base-1.3.3.1-13.el7.src.rpm 31-Mar-2015 ...