谁能笑到最后,约瑟夫环-Josephus问题求解
一、 简述Josephus问题
N个人站成一环,从1号开始,用刀将环中后面一个人“消灭“”掉,之后再将刀递给下一个人,这样依次处理,最后留下一个幸存者。
二、 求解方法
1. 约瑟夫问题如果使用链表来求解比较麻烦,这里采用循环队列的处理。
约瑟夫问题可以等价为l连续地DeQueue()两次,然后再将第一次DeQueue()的值EnQueue()入队列尾,直到队列中只剩下一个元素。
# 循环队列代码如下:
#include <stdio.h>
#include <stdlib.h> #define MAX 100 /* Maximum size of Queue */ typedef struct _Queue *Queue;
struct _Queue {
int A[MAX];
int Head, Tail;
int Num_of_Items;
}; /* Queue struct and pointer define */ void EnQueue( Queue Q, int x )
{
if ( Q->Num_of_Items < MAX ) {
/* Cycle Queue not full */
if ( Q->Num_of_Items == ) {
Q->Head = Q->Tail = ;
Q->A[] = x;
} else {
Q->Tail = (Q->Tail + ) % MAX; /* Tail insert */
Q->A[Q->Tail] = x;
}
Q->Num_of_Items++;
} else {
printf("Warning: Full Queue!\n");
return;
}
} int DeQueue( Queue Q )
{
if ( Q->Num_of_Items < ) {
/* empty queue */
printf("Warning: Empty Queue!\n");
} else {
int ret = Q->A[Q->Head];
Q->Num_of_Items--;
Q->Head = (Q->Head + ) % MAX;
return ret;
}
}
# 循环队列解约瑟夫问题:
void JosephusByQueue()
{
_Queue Que;
Queue Q = &Que; /* initial */
//Queue Q = (Queue)malloc( sizeof(struct _Queue) );
Q->Num_of_Items = ; int i, j, n, answer;
printf("Enter an integer (1--99):");
scanf("%d", &n); /* Solve Josephus Problem */
/* Step 1: Put all the number between 1 to n to the Queue */
for ( i = ; i <= n; i++ ) {
EnQueue( Q, i);
} /* Step 2: Start killing for n-1 rounds */
for ( i = ; i < n; i++ ) {
j = DeQueue( Q ); /* first dequeue item */
DeQueue( Q );
EnQueue( Q, j );
} answer = Q->A[Q->Head]; /* the last item */
printf("The value of J(%d) is: %d\n", n, answer);
}
2. 每次隔一个人就消灭掉一人,经过一圈,消灭一半,就等于累次除二。等价于二的幂相关问题。
对于Josephus( N ):
[1] 若N为二次幂(N = 2^M),M为幂次。从开始一圈消除偶数,再消除奇数,每次跳过起始的1,最终留下1。
EX 1: J( 8 ): Green : start , Red: delete
2 3 4 5 6 7 8 --> 1 2 3 4 5 6 7 8 --> 1 3 5 7
--> 1 3 5 7 --> 5 --> 1 5 --> 1
[2] 若N为奇数,可化为(N = 2^M + K),先 消除K个人,即经历过2K个人后。又为偶数问题,留下的[ Last=2K+1 ]。
EX 2: J( 10 ) : N = 10, M = 3, K = 2 --> J( 10 ) = 2*k + 1 = 5
公式: N = 2^M + K , K= N - 2^M。 J( N ) = 2 *( N - 2^M ) + 1
求解代码:
/* 数学解法:N = 2^M + K | Last = 2 *( N - 2^M ) + 1 */
void Josephus()
{
int i, n, m_prime, k;
printf("Enter an integer:");
scanf("%d", &n); i = ;
while ( i < n ) {
/* find the largest power of 2 that less than n */
i *= ;
}
m_power = i / ;
k = n - m_power;
printf("The remain one is %d!\n", ( * k + ));
}
主函数:
int main(int argc, char *argv[])
{
printf("Method 1: Math solving\n");
Josephus(); printf("\nMethod 2: Queue solving\n");
return ;
}
参考资料:
[1] 中国大学MOOC-数据结构-台湾清华大学-04BasicDataStructure
[2] 2的幂在约瑟夫环问题的应用https://www.cnblogs.com/sirlipeng/p/5387830.html#undefined
图片来自网络
谁能笑到最后,约瑟夫环-Josephus问题求解的更多相关文章
- 单向环形链表解决约瑟夫环(Josephus)问题
一.约瑟夫环问题 Josephu 问题为:设编号为1,2,- n的n个人围坐一圈,约定编号为k(1<=k<=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那 ...
- 习题3.10 约瑟夫环 josephus问题
/* assume a header */ /* 双向循环链表 */ struct Node; typedef struct Node * PtrToNode; typedef PtrToNode L ...
- 约瑟夫环问题(Josephus)
约瑟夫环:用户输入M,N值,从1至N开始顺序循环数数,每数到M输出该数值,直至最后一个元素并输出该元素的值. 一.循环链表:建立一个有N个元素的循环链表,然后从链表头开始遍历并记数,如果计数值为M,则 ...
- LightOJ - 1179 Josephus Problem(约瑟夫环)
题目链接:https://vjudge.net/contest/28079#problem/G 题目大意:约瑟夫环问题,给你n和k(分别代表总人数和每次要数到k),求最后一个人的位置. 解题思路:因为 ...
- 组合数学--约瑟夫环问题 Josephus
约瑟夫斯问题(有时也称为约瑟夫斯置换),是一个出现在计算机科学和数学中的问题.在计算机编程的算法中,类似问题又称为约瑟夫环. 有n个囚犯站成一个圆圈,准备处决.首先从一个人开始,越过k-2个人(因为第 ...
- Josephus环的四种解法(约瑟夫环)
约瑟夫环 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个 ...
- 约瑟夫环的java解决
总共3中解决方法,1.数学推导,2.使用ArrayList递归解决,3.使用首位相连的LinkedList解决 import java.util.ArrayList; /** * 约瑟夫环问题 * 需 ...
- 简洁之美 -约瑟夫环的python 解法
问题描述: 约瑟夫环问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到k的那个人出列:他的下一个人又从1开始报数,数到k的那个人又出列:依此规律重复下 ...
- 约瑟夫环 --- 面向对象 --- java代码
约瑟夫环 的 面向对象 解法 罗马人占领乔塔帕特后,39个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个 ...
随机推荐
- 【Leetcode】【Medium】Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- 实验 MPLS LDP配置
实验 MPLS LDP配置 一.学习目的 掌握启用和关闭MPLS的方法 掌握启用和关闭MPLS LDP配置方法 掌握使用MPLS LDP配置LSP的方法 二.拓扑图 三.场景 你是公司的网管员,公司的 ...
- linux shell每天一阅 -- 安装nginx以及apache
当然这个博客原代码是转载大神的... 自动安装Nginx脚本,采用case方式,选择方式,也可以根据实际需求改成自己想要的脚本mynginx.sh #!/bin/sh ###nginx install ...
- Windows 编译 MQTT C++ Client
MQTT MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分.该协议支持所有平台,几乎可 ...
- CPP-基础:互斥量
互斥量的用途和临界区很像.它与临界区的差别在于可以跨线程使用,可以用来同步进行多个线程间的数据访问,但是是以牺牲速度为代价的.只有临界区是非核心对象,那么互斥量就是一个核心对象了.核心对象的特点是有所 ...
- HDU 2048 神、上帝以及老天爷(错排概率问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2048 神.上帝以及老天爷 Time Limit: 2000/1000 MS (Java/Others) ...
- 关于void*类型的用法(相当于OC中的id类型)
关于void*类型的用法(相当于OC中的id类型) 1.C++语言在对于void* 类型的使用很特别,因为void* 可以间接引用任何其他数据类型的指针,比如int*.float*甚至抽象数据类型的指 ...
- 第23章 I2C—读写EEPR
本章参考资料:<STM32F76xxx参考手册>.<STM32F7xx规格书>.库帮助文档<STM32F779xx_User_Manual.chm>及<I2C ...
- REST解惑
本文是「架构风格:你真的懂REST吗?」的补充! REST全称是Representational State Transfer,目前普遍接受的中文翻译为「表述性状态转移」! 即使翻译过来了,你依然有一 ...
- HP-UNIX平台修改Oracle processes参数报错:ORA-27154、ORA-27300、ORA-27301、ORA-27302
OS 版本 :HP-UX B.11.31Oracle版本:11.2.0.4 (RAC) (一)问题描述 最近发现无法连接上数据库,报错信息为“ORA-00020:maximum number ...