图像的膨胀(Dilation)和腐蚀(Erosion)是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域。其中膨胀类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大;腐蚀类似于“领域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。

1.图像膨胀

膨胀的运算符是“⊕”,其定义如下:

该公式表示用B来对图像A进行膨胀处理,其中B是一个卷积模板或卷积核,其形状可以为正方形或圆形,通过模板B与图像A进行卷积计算,扫描图像中的每一个像素点,用模板元素与二值图像元素做“与”运算,如果都为0,那么目标像素点为0,否则为1。从而计算B覆盖区域的像素点最大值,并用该值替换参考点的像素值实现膨胀。下图是将左边的原始图像A膨胀处理为右边的效果图A⊕B。

2.图像腐蚀

腐蚀的运算符是“-”,其定义如下:

该公式表示图像A用卷积模板B来进行腐蚀处理,通过模板B与图像A进行卷积计算,得出B覆盖区域的像素点最小值,并用这个最小值来替代参考点的像素值。如图所示,将左边的原始图像A腐蚀处理为右边的效果图A-B。

处理结果如下图所示:

二. 图像腐蚀代码实现

1.基础理论

形态学转换主要针对的是二值图像(0或1)。图像腐蚀类似于“领域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。其主要包括两个输入对象:

(1)二值图像

(2)卷积核

卷积核是腐蚀中的关键数组,采用numpy库可以生成。卷积核的中心点逐个像素扫描原始图像,如下图所示:

 

被扫描到的原始图像中的像素点,只有当卷积核对应的元素值均为1时,其值才为1,否则其值修改为0。换句话说,遍历到的黄色点位置,其周围全部是白色,保留白色,否则变为黑色,图像腐蚀变小。

2.函数原型

图像腐蚀主要使用的函数为erode,其原型如下:

dst = cv2.erode(src, kernel, iterations)

参数dst表示处理的结果,src表示原图像,kernel表示卷积核,iterations表示迭代次数。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

注意:迭代次数默认是1,表示进行一次腐蚀,也可以根据需要进行多次迭代,进行多次腐蚀。

3.代码实现

完整代码如下所示:

输出结果如下图所示:

由图可见,干扰的细线被进行了清洗,但仍然有些轮廓,此时可设置迭代次数进行腐蚀。

erosion = cv2.erode(src, kernel,iterations=9)

输出结果如下图所示:

三. 图像膨胀代码实现

1.基础理论

图像膨胀是腐蚀操作的逆操作,类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大,线条变粗了,主要用于去噪。

(1) 图像被腐蚀后,去除了噪声,但是会压缩图像。

(2) 对腐蚀过的图像,进行膨胀处理,可以去除噪声,并且保持原有形状。

它也包括两个输入对象:

(1)二值图像或原始图像

(2)卷积核

卷积核是腐蚀中的关键数组,采用numpy库可以生成。卷积核的中心点逐个像素扫描原始图像,如下图所示:

被扫描到的原始图像中的像素点,当卷积核对应的元素值只要有一个为1时,其值就为1,否则为0。

2.函数原型

图像膨胀主要使用的函数为dilate,其原型如下:

dst = cv2.dilate(src, kernel, iterations)

参数dst表示处理的结果,src表示原图像,kernel表示卷积核,iterations表示迭代次数。下图表示5*5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

注意:迭代次数默认是1,表示进行一次膨胀,也可以根据需要进行多次迭代,进行多次膨胀。通常进行1次膨胀即可。

3.代码实现

完整代码如下所示:

输出结果如下所示:

图像去噪通常需要先腐蚀后膨胀,这又称为开运算,下篇文章将详细介绍。如下图所示:

erosion = cv2.erode(src, kernel)

result = cv2.dilate(erosion, kernel)

Python图像处理:图像腐蚀与图像膨胀的更多相关文章

  1. Python图像处理丨图像腐蚀与图像膨胀

    摘要:本篇文章主要讲解Python调用OpenCV实现图像腐蚀和图像膨胀的算法. 本文分享自华为云社区<[Python图像处理] 八.图像腐蚀与图像膨胀>,作者: eastmount . ...

  2. python图像处理(2)图像水印和PIL模式转化

    模式转化: PIL模式转化:将图片转化成其他模式 # 我们将image图像转化为灰度图像(python) from PIL import Image img = Image.open('c:\\1.J ...

  3. python图像处理(1)图像的打开与保存

    使用python进行图像处理时有三种库可以使用分别是:PIL.matplotlib.pyplot.opencv(opencv未接触) 注意:matplotlib读取进来的图片是unit8,0-255范 ...

  4. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  5. Python 图像处理 OpenCV (15):图像轮廓

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Python 图像处理 OpenCV (16):图像直方图

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python图像处理丨三种实现图像形态学转化运算模式

    摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算.图像闭运算和梯度运算 本文分享自华为云社区<[Python图像处理] 九.形态学之图像开运算.闭运算.梯度运 ...

  8. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  9. opencv2函数学习之erode、dilate:图像腐蚀和膨胀

    图像腐蚀和图像膨胀是图像中两种最基本形态学操作. ,-), ,int borderType=BORDER_CONSTANT, const Scalar& borderValue=morphol ...

随机推荐

  1. SVN 代码托管

    1.安装服务 使用yum安装subversion,简单.不繁琐. 1 yum install -y subversion 2.创建版本库 1 2       mkidr /svn/obj        ...

  2. jquery事件绑定函数

    1.bind 使用语法: jQueryObject.bind( events [, data ], handler ) jQueryObject.bind( events [, data ] [, i ...

  3. sql server中同时执行select和update语句死锁问题

    原始出处 http://oecpby.blog.51cto.com/2203338/457054 最近在项目中使用SqlServer的时候发现在高并发情况下,频繁更新和频繁查询引发死锁.通常我们知道如 ...

  4. 高精度定时器实现 z

    1背景Permalink .NET Framework 提供了四种定时器,然而其精度都不高(一般情况下 15ms 左右),难以满足一些场景下的需求. 在进行媒体播放.绘制动画.性能分析以及和硬件交互时 ...

  5. Python学习---模版/包的概念

    1.1. 模块/包的概念 在Python中,一个.py文件就称之为一个模块(Module) 模块一共三种: python标准库 第三方模块 应用程序自定义模块 模块的使用:模块是用来组织函数的 解释器 ...

  6. is和as在类型转换时的性能差异

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/xxdddail/article/details/36655219 is和as是.NET中经常使用的操 ...

  7. 池化层pooling

    from mxnet import autograd,nd from mxnet import gluon,init from mxnet.gluon import nn,loss as gloss ...

  8. 「bzoj4264 小C找朋友」

    权限题 就是一个集合\(hash\) 集合\(hash\)可以用于判断两个集合是否相等,具体做法就是给每个随机一个值,之后异或起来就是可以了 这个题就是这样,处理出每个点直接相连的点集的\(hash\ ...

  9. Linux学习总结(十六)系统用户及用户组管理

    先来认识两个文件 /etc/passwd/etc/shadow我们打印出首尾三行,来了解下:每行由:分割为7段,每段含义为:第一段:用户名,比如root 用户,普通用户test,lv,test1第二段 ...

  10. 压缩Windows系统磁盘

    compact /compactOS:always #压缩所有 OS 二进制文件并将系统状态设置为"压缩" compact /compactOS:never #减压缩所有 OS 二 ...