numpy库是python的一个著名的科学计算库,本文是一个quickstart。

引入:计算BMI

BMI = 体重(kg)/身高(m)^2

假如有如下几组体重和身高数据,让求每组数据的BMI值:

weight = [65.4,59.2,63.6,88.4,68.7]
height = [1.73,1.68,1.71,1.89,1.79]
print weight / height ** 2

执行上面代码,报错:TypeError: unsupported operand type(s) for ** or pow(): 'list' and 'int'

这是因为普通的除法是元素级的而非向量级的,并不能应用到一组数据上。

解决方案:使用numpy.ndarray数据结构(N维数组),运算是面向矩阵的:

import numpy as np
np_weight = np.array(weight)
np_height = np.array(height)
print type(np_weight)
print type(np_height)
<type 'numpy.ndarray'>
<type 'numpy.ndarray'>
print np_weight
print np_height
[ 65.4  59.2  63.6  88.4  68.7]
[ 1.73 1.68 1.71 1.89 1.79]

注:和python的列表不同的是,numpy.ndarray数据结构的元素之间是没有逗号分隔的。

np_bmi = np_weight / np_height ** 2
print type(np_bmi)
print np_bmi
<type 'numpy.ndarray'>
[ 21.85171573 20.97505669 21.75028214 24.7473475 21.44127836]

numpy数组:numpy.ndarray

numpy.ndarray是numpy最基本的数据结构,即N维数组,且数组中的元素需要是同一种类型,如果不是,则会自动转换成同一种类型,如:

print np.array([1.0,'hi',True])
['1.0' 'hi' 'True']

可以看到都被转成了字符串类型。

不同数据类型的不同行为

# 普通的python列表
py_list = [1,2,3]
# numpy数组
np_array = np.array(py_list)
print py_list + py_list  # 这是列表的拼接
[1, 2, 3, 1, 2, 3]
print np_array + np_array  # 这是每两个对应元素之间的运算
[2 4 6]

子集

print np_bmi[0]
21.8517157272
print np_bmi > 23
[False False False  True False]
print np_bmi[np_bmi > 23]
[ 24.7473475]

二维numpy数组

二维numpy数组是以list作为元素的数组,比如:

np_2d = np.array([height,weight])
print type(np_2d)
<type 'numpy.ndarray'>
print np_2d
[[  1.73   1.68   1.71   1.89   1.79]
[ 65.4 59.2 63.6 88.4 68.7 ]]
print np_2d.shape
(2, 5)

通过shape属性值可以看出,np_2d是一个2行5列的二维数组。

single type原则

print np.array([[1,2],[3,'4']])
[['1' '2']
['3' '4']]

二维numpy数组的子集

np_2d = np.array([height,weight])
print np_2d
[[  1.73   1.68   1.71   1.89   1.79]
[ 65.4 59.2 63.6 88.4 68.7 ]]
print np_2d[0][2]
1.71
print np_2d[0,2]
1.71

还可以在两个轴向上分别切片:

print np_2d[:,1:3]
[[  1.68   1.71]
[ 59.2 63.6 ]]

选取第1行:

print np_2d[1,:]
[ 65.4  59.2  63.6  88.4  68.7]

求对应的BMI值:

print np_2d[1,:] / np_2d[0,:] ** 2
[ 21.85171573  20.97505669  21.75028214  24.7473475   21.44127836]

应用

用numpy生成呈正太分布的随机测试数据,并求各项基本的统计数据。

比如生成10000条数据集,记录的是某个镇上所有居民的身高(m)、体重(kg)数据,所用到的函数:

np.random.normal(均值,标准差,取样数)

height = np.random.normal(1.75,0.20,10000)
weight = np.random.normal(60.32,15,10000)

下面将若干个(这里是2个)一维数组拼成一个二维数组(有点像zip()函数的作用):

np_info = np.column_stack((height,weight))
print np_info
[[  1.88474198  76.24957048]
[ 1.85353302 64.62674488]
[ 1.74999035 67.5831439 ]
...,
[ 1.78187257 50.11001273]
[ 1.90415778 50.65985964]
[ 1.51573081 41.00493358]]

求np_info身高平均值:

print np.mean(np_info[:,0])
1.75460102053

求身高的中位数:

print np.median(np_info[:,0])
1.75385473036

求身高和体重的相关系数:

print np.corrcoef(np_info[:,0],np_info[:,1])
[[  1.00000000e+00  -1.50825116e-04]
[ -1.50825116e-04 1.00000000e+00]]

求身高的标准差:

print np.std(np_info[:,0])
0.201152169706

排序(不会影响源数组):

print np.sort(np_info[0:10,0])
[ 1.46053123  1.59268772  1.74939538  1.74999035  1.78229515  1.85353302
1.88474198 1.99755291 2.12384833 2.3727505 ]

求和:

print np.sum(np_info[0:10,0])
18.5673265584

随机推荐

  1. Crosses Puzzles zoj 4018 (zju校赛)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5746 题目大意: N*M的方格里,每个格子有一个指针,一开始指向上下左右四个方 ...

  2. String painter (hdu 2476 DP好题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2476 题目大意: 给出两个等长的串S, T, 要将S变成T, 每次可以把S的连续的一段变成相同的字母 ...

  3. linux和android端的pthread学习

    本文起初主要想写个演示样例实測下pthread_mutex_lock和pthread_mutex_trylock差别.在linux机器上非常快就over了,可是想了一下.pthread是unix系的, ...

  4. java项目学习

    GitHub地址:https://github.com/zhanglei-workspace/shopping-management-system

  5. 面试题思考:Cookie 和 Session的区别

    面试回答: 1.cookie数据存放在客户的浏览器上,session数据放在服务器上. 2.cookie不是很安全,别人可以分析存放在本地的cookie并进行cookie欺骗,考虑到安全应当使用ses ...

  6. layoutSubviews何时调用的问题

    本文转载至 http://www.cnblogs.com/pengyingh/articles/2417211.html 今天跟旺才兄学习了一下UIView的setNeedsDisplay和setNe ...

  7. 记一次androidd登陆页面的实现

    背景 先说个事:最近我准备做个开源的博客园android客户端!符合Google最新的material design设计风格的!不知道有没有小伙伴愿意和我一起做呢?如果有愿意的,请私信我哦!!!!我还 ...

  8. leetcode 326 Power of Three (python)

    原题: Given an integer, write a function to determine if it is a power of three. Follow up: Could you ...

  9. 【BZOJ2194】快速傅立叶之二

    [BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...

  10. xmpp muc 群聊协议 1

    翻译来自 :http://wiki.jabbercn.org/index.php?title=XEP-0045&variant=zh-cn#.E6.9C.AF.E8.AF.AD 通用术语 Af ...