Description

A square township has been divided up into n*m(n rows and m columns) square plots (1<=N,M<=8),some of them are blocked, others are unblocked. The Farm is located in the lower left plot and the Market is located in the lower right plot. Tony takes her tour of the township going from Farm to Market by walking through every unblocked plot exactly once. 
Write a program that will count how many unique tours Betsy can take in going from Farm to Market. 

Input

The input contains several test cases. The first line of each test case contain two integer numbers n,m, denoting the number of rows and columns of the farm. The following n lines each contains m characters, describe the farm. A '#' means a blocked square, a '.' means a unblocked square. 
The last test case is followed by two zeros. 

Output

For each test case output the answer on a single line.
 
题目大意:找到一条路径,经过所有非阻塞点,从右下到达左下。
思路:在最后加两排
.#######.
.......
 
代码(16MS):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL; const int MAXN = ;
const int SIZEH = ;
const int MAXH = ; struct hash_map {
int head[SIZEH], size;
int state[MAXH], next[MAXH];
LL val[MAXH]; void init() {
memset(head, -, sizeof(head));
size = ;
} void insert(int st, LL sv) {
int h = st % SIZEH;
for(int p = head[h]; ~p; p = next[p]) {
if(state[p] == st) {
val[p] += sv;
return ;
}
}
state[size] = st; val[size] = sv; next[size] = head[h]; head[h] = size++;
}
} hashmap[]; hash_map *cur, *last;
int acc[] = {, -, , };
char mat[MAXN][MAXN];
int n, m, en, em; int getB(int state, int i) {
return (state >> (i << )) & ;
} void setB(int &state, int i, int val) {
state = (state & ~( << (i << ))) | (val << (i << ));
} int getLB(int state, int i) {
int ret = i, cnt = ;
while(cnt) {
--ret;
cnt += acc[getB(state, ret)];
}
return ret;
} int getRB(int state, int i) {
int ret = i, cnt = -;
while(cnt) {
++ret;
cnt += acc[getB(state, ret)];
}
return ret;
} void update(int x, int y, int state, LL tv) {
int left = getB(state, y);
int up = getB(state, y + );
if(mat[x][y] == '#') {
if(left == && up == ) cur->insert(state, tv);
return ;
}
if(left == && up == ) {
if(x == n - || y == m - ) return ;
int newState = state;
setB(newState, y, );
setB(newState, y + , );
cur->insert(newState, tv);
} else if(left == || up == ) {
if(x < n - ) {
int newState = state;
setB(newState, y, up + left);
setB(newState, y + , );
cur->insert(newState, tv);
}
if(y < m - ) {
int newState = state;
setB(newState, y, );
setB(newState, y + , up + left);
cur->insert(newState, tv);
}
} else {
int newState = state;
setB(newState, y, );
setB(newState, y + , );
if(left == && up == ) setB(newState, getRB(state, y + ), );
if(left == && up == && !(x == en && y == em)) return ;
if(left == && up == ) setB(newState, getLB(state, y), );
cur->insert(newState, tv);
}
} void findend() {
for(en = n - ; en >= ; --en)
for(em = m - ; em >= ; --em) if(mat[en][em] != '#') return ;
} LL solve() {
findend();
cur = hashmap, last = hashmap + ;
last->init();
last->insert(, );
for(int i = ; i < n; ++i) {
int sz = last->size;
for(int k = ; k < sz; ++k) last->state[k] <<= ;
for(int j = ; j < m; ++j) {
cur->init();
sz = last->size;
for(int k = ; k < sz; ++k)
update(i, j, last->state[k], last->val[k]);
swap(cur, last);
}
}
for(int k = ; k < last->size; ++k)
if(last->state[k] == ) return last->val[k];
return ;
} int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if(n == && m == ) break;
memset(mat, , sizeof(mat));
for(int i = ; i < n; ++i) scanf("%s", mat[i]);
for(int i = ; i < m - ; ++i) mat[n][i] = '#';
n += ;
cout<<solve()<<endl;
}
}

POJ 1739 Tony's Tour(插头DP)的更多相关文章

  1. POJ 1739 Tony's Tour (插头DP,轮廓线DP)

    题意:给一个n*m的矩阵,其中#是障碍格子,其他则是必走的格子,问从左下角的格子走到右下角的格子有多少种方式. 思路: 注意有可能答案是0,就是障碍格子阻挡住了去路. 插头DP有两种比较常见的表示连通 ...

  2. [POJ 1739] Tony's Tour

    Link: POJ 1739 传送门 Solution: 这题除了一开始的预处理,基本上就是插头$dp$的模板题了 由于插头$dp$求的是$Hamilton$回路,而此题有起点和终点的限制 于是可以构 ...

  3. POJ 1739 Tony's Tour (DP)

    题意:从左下角到右下角有多少种走法. 析:特殊处理左下角和右下角即可. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000 ...

  4. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

  5. POJ 3133 Manhattan Wiring (插头DP,轮廓线,经典)

    题意:给一个n*m的矩阵,每个格子中有1个数,可能是0或2或3,出现2的格子数为2个,出现3的格子数为2个,要求将两个2相连,两个3相连,求不交叉的最短路(起终点只算0.5长,其他算1). 思路: 这 ...

  6. 【POJ】1739 Tony's Tour

    http://poj.org/problem?id=1739 题意:n×m的棋盘,'#'是障碍,'.'是空白,求左下角走到右下角且走过所有空白格子的方案数.(n,m<=8) #include & ...

  7. 插头DP专题

    建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...

  8. 插头DP题目泛做(为了对应WYD的课件)

    题目1:BZOJ 1814 URAL 1519 Formula 1 题目大意:给定一个N*M的棋盘,上面有障碍格子.求一个经过所有非障碍格子形成的回路的数量. 插头DP入门题.记录连通分量. #inc ...

  9. 【POJ】【1739】Tony's Tour

    插头DP 楼教主男人八题之一! 要求从左下角走到右下角的哈密顿路径数量. 啊嘞,我只会求哈密顿回路啊……这可怎么搞…… 容易想到:要是把起点和重点直接连上就变成一条回路了……那么我们就连一下~ 我们可 ...

随机推荐

  1. input和div模仿select,带输入提示

    有时候我们需要select和input的结合体,即可以使用下拉框,同时也可以用来输入,输入的同时显示可选的下拉选项 先上html代码 <div class="input-group i ...

  2. 『C++』Temp_2018_12_26

    #include <iostream> #include <string> #include <array> using namespace std; class ...

  3. ztree的用法

    哎哟,好久没写什么这个虽然没人看的博客了,其实这段时间情绪非常低谷,就没有写博客了,不过我还是回来了,回到正题,在前端页面编程的时候,我们经常用到树状,用原始的树状呢,功能没有那么强大,所以这个时候 ...

  4. SpringBoot整合Eureka搭建微服务

    1.创建一个services项目,添加三个子模块client(客户端).service(服务端).registry(注册中心) 1.1 创建一个services项目 1.2 添加pom.xml依赖 & ...

  5. centos6,python3,通过pip安装pycurl出现报错提示

    Centos6.7系统,python3.6.7,通过 pip 安装pycurl出现报错: __main__.ConfigurationError: Could not run curl-config: ...

  6. 关于linux‘RedHat6.9在VMware虚拟机中的安装步骤

    redhat支持多种安装方式:光盘安装,硬盘安装和网络安装等,可以根据个人的实际情况来选择.我在这里选择的是光盘安装的方式安装RHEL6.9.(以下简称6.9) 1.首先准备好6.9的光盘镜像,在安装 ...

  7. 06 day小数据池

    1.小数据池,id() 小数据池针对的是: int ,str,bool-----都是不可变的数据类型  a.int 类型 a = 1000 b = 1000 print(id(a), id(b))   ...

  8. Centos7 Redis3.0 集群搭建备忘

    (要让集群正常工作至少需要3个主节点,在这里我们要创建6个redis节点,其中三个为主节点,三个为从节点,对应的redis节点的ip和端口对应关系如下) 127.0.0.1:7000 127.0.0. ...

  9. opencv3 学习五 - 合并与分割通道

    合并与分割通道 程序如下 #include "opencv2/opencv.hpp" using namespace cv; int main() { Mat original = ...

  10. PHP变量问题,Bugku变量1

    知识点:php正则表达式,php函数,全局变量GLOBALS(注意global和$GLOBALS[]的区别) PHP函数: isset():     条件判断 get方法传递的args参数是否存在 p ...