Description

Still remember those games we played in our childhood? Folding and cutting paper must be among the most popular ones. Clever children will always search for something new, even when they play games like cutting paper. Now, Carol, a smart girl, asks her brother Mike to solve a puzzle. However, as always, Mike cannot find the solution, therefore he turns to you for help.

Carol's puzzle is simple to state. She folds the paper in a certain manner and then uses a knife to cut through the folded paper. What Mike needs to do is to tell how many pieces the folded paper will turn into after it is cut. To eliminate the ambiguity, we can coordinate the paper as [0, 1] * [0, 1], with the coordinates of lower left corner (0, 0). A fold is denoted by two points (x1, y1) and (x2, y2) on the folding line, with which, the direction of the line is determined by from (x1, y1) to (x2, y2). Carol will always fold the paper from left to right relative to the directed line given (see Figure-1). The cut is determined by the two points on the cut line. Please note that the points given to determine the fold or the cut are not necessarily on the paper. 

Input

The first line of the input contains one integer t, the number of test cases. Then t cases follow. For each test case, the first line consists of an integer N (0 <= N <= 20), the number of folds, and the following N lines give two points on each fold line as x1, y1, x2, y2. The following line gives two points on the cut line in the same way.

Output

For each test case, output one line containing the number of pieces the paper will turn into after the cut.
 
题目大意:给一张正方形的纸,沿给出的n条线折叠n次,然后沿一条线切开,问切开后有多少张纸。(估计在折痕上切也可以把折痕切开)
主要是要理解上面所说的 本质不同的点。所谓本质不同的点,包括有两点虽然拥有同一个坐标,但是它们实际上是这张纸不同的点。
还有上面没有提到的,关于切割的时候,再折叠一次再切。
 
PS:好难……
 
代码(16MS):
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
typedef pair<int, int> PII; const double PI = acos(-1.0);
const double EPS = 1e-; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (double t) const {
return Point(x * t, y * t);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
double l = length();
return Point(x / l, y / l);
}
}; double dist(const Point &p1, const Point &p2) {
return (p1 - p2).length();
} Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} double cross(const Point &sp, const Point &ep, const Point &op) {
return cross(sp - op, ep - op);
} struct Seg {
Point st, ed;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
};
typedef Seg Line;
//return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} Point reflection(const Point &p, const Line &l) {
Point t = rotate(l.ed - l.st, -PI / );
return p + t.unit() * ( * Point_to_Line(p, l));
} vector<Point> p_vec, p_buf; struct Poly {
vector<int> id;
void add(int i) {
id.push_back(i);
}
Point& operator [] (int i) const {
return p_vec[id[i]];
}
}; vector<Poly> pol_vec, pol_buf;
map<PII, int> edge_map; Point paper[] = {Point(, ), Point(, ), Point(, ), Point(, )}; void reflection(const Poly &pol, const Line &l) {
for(int i = ; i < int(pol.id.size()); ++i)
if(pol.id[i] < int(p_buf.size())) p_buf[pol.id[i]] = reflection(pol[i], l);
} int intersection(int id1, int id2, const Point &p1, const Point &p2) {
map<PII, int>::iterator it = edge_map.find(make_pair(id1, id2));
if(it == edge_map.end()) {
p_vec.push_back(Line(p_vec[id1], p_vec[id2]) * Line(p1, p2));
edge_map[make_pair(id1, id2)] = edge_map[make_pair(id1, id2)] = p_vec.size() - ;
return p_vec.size() - ;
} else return it->second;
} void fold(const Point &p1, const Point &p2, const Poly &pol) {
Poly res1, res2;
int last_s = sgn(cross(p1, pol[], p2));
for(int i = ; i < int(pol.id.size()); ++i) {
int now_s = sgn(cross(p1, pol[i], p2));
if(now_s == ) {
res1.add(pol.id[i]);
res2.add(pol.id[i]);
} else if(now_s < ) {
if(last_s > ) {
int k = intersection(pol.id[i - ], pol.id[i], p1, p2);
res1.add(k);
res2.add(k);
}
res1.add(pol.id[i]);
} else if(now_s > ) {
if(last_s < ) {
int k = intersection(pol.id[i - ], pol.id[i], p1, p2);
res1.add(k);
res2.add(k);
}
res2.add(pol.id[i]);
}
last_s = now_s;
}
if(res1.id.size() > ) {
res1.add(res1.id[]);
reflection(res1, Line(p1, p2));
reverse(res1.id.begin(), res1.id.end());
pol_buf.push_back(res1);
}
if(res2.id.size() > ) {
res2.add(res2.id[]);
pol_buf.push_back(res2);
}
} void fold(const Point &p1, const Point &p2) {
p_buf = p_vec;
edge_map.clear();
pol_buf.clear();
for(int i = ; i < int(pol_vec.size()); ++i)
fold(p1, p2, pol_vec[i]);
pol_vec = pol_buf;
for(int i = ; i < int(p_buf.size()); ++i)
p_vec[i] = p_buf[i];
} void dfs(vector<bool> &vis, int id, const Line &l) {
vis[id] = true;
Poly &pol = pol_vec[id];
for(int i = ; i < int(pol.id.size() - ); ++i) {
if(sgn(cross(l.ed, pol[i], l.st)) == && sgn(cross(l.ed, pol[i + ], l.st)) == ) continue;
int id1 = pol.id[i], id2 = pol.id[i + ];
for(int j = ; j < int(pol_vec.size()); ++j) {
if(vis[j]) continue;
for(int k = ; k < int(pol_vec[j].id.size() - ); ++k) {
if(pol_vec[j].id[k] == id1 && pol_vec[j].id[k + ] == id2) {
dfs(vis, j, l);
break;
}
}
}
}
} int cut(const Line &l) {
int ret = ;
vector<bool> vis(p_vec.size());
for(int i = ; i < int(pol_vec.size()); ++i) {
if(!vis[i]) {
dfs(vis, i, l);
++ret;
}
}
return ret;
} int main() {
int T;
scanf("%d", &T);
Poly init_pol;
for(int i = ; i <= ; ++i) init_pol.add(i & );
while(T--) {
int n;
scanf("%d", &n);
p_vec.clear();
pol_vec.clear();
for(int i = ; i < ; ++i) p_vec.push_back(paper[i]);
for(int i = ; i <= ; ++i) pol_vec.push_back(init_pol);
Point p1, p2;
for(int i = ; i <= n; ++i) {
p1.read(), p2.read();
fold(p1, p2);
}
printf("%d\n", cut(Line(p1, p2)));
}
}

POJ 1921 Paper Cut(计算几何の折纸问题)的更多相关文章

  1. 【BZOJ】1074: [SCOI2007]折纸origami

    http://www.lydsy.com/JudgeOnline/problem.php?id=1074 题意:一开始有一个左上角是(0,100),右下角是(100,0)的纸片,现在可以沿有向直线折n ...

  2. 1074: [SCOI2007]折纸origami

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 372  Solved: 229[Submit][Status][Discuss] Descriptio ...

  3. 【题解】折纸 origami [SCOI2007] [P4468] [Bzoj1074]

    [题解]折纸 origami [SCOI2007] [P4468] [Bzoj1074] 传送门:折纸 \(\text{origami [SCOI2007] [P4468]}\) \(\text{[B ...

  4. CSS3写折纸

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  5. 折纸问题java实现

    /** * 折纸问题 这段代码写的太low了 本人水平有限 哎... 全是字符串了 * @param n * @return * @date 2016-10-7 * @author shaobn */ ...

  6. 1074: [SCOI2007]折纸origami - BZOJ

    Description 桌上有一张边界平行于坐标轴的正方形纸片,左下角的坐标为(0,0),右上角的坐标为(100,100).接下来执行n条折纸命令.每条命令用两个不同点P1(x1,y1)和P2(x2, ...

  7. CSS3实现文字折纸效果

    CSS3实现文字折纸效果 效果图: 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <title></tit ...

  8. UVA 177 PaperFolding 折纸痕 (分形,递归)

    著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折……每次对折都是从右往左折,因此在折了很多次以后,原先的大纸会变成一个窄窄的纸条.现在把这个纸条沿着折纸的痕迹打开,每次都只打开“一半”,即把每 ...

  9. ZR#955 折纸

    ZR#955 折纸 解法: 可以发现折纸之后被折到上面的部分实际上是没有用的,因为他和下面对应位置一定是一样的,而影响答案的只有每个位置的颜色和最底层的坐标范围.因此,我们只需要考虑最底层即可,即我们 ...

随机推荐

  1. 个人开发者即时到账收款方案 BufPay.com

    BufPay 个人即时到账支付平台 前言 作为独立开发者,一般只有一个人独立奋战,做出了产品需要收款是非常麻烦的,接入支付宝微信支付都需要公司公户,而注册公司.开公户等一系列操作非常麻烦,成本也很高一 ...

  2. BFC的特性及使用场景

    BFC(Block Formatting Context)块级格式化上下文,是Web页面 CSS 视觉渲染的一部分,用于决定块盒子的布局及浮动相互影响范围的一个区域. BFC的特性: 1. 属于同一个 ...

  3. ComboBox可搜索下拉框的使用注意事项,简单记录以及我遇到的一些奇怪的bug

    前几天做一个react的项目的时候需要用一个可搜索的下拉框ComboBox,上代码: <ComboBox // className={comboxClassName} items={storeA ...

  4. HTML5新标签兼容——> <!--<if lt IE 9><!endif-->

    第一种方法:(使用html5shiv) <!--[if lt IE9]> <script src="http://html5shiv.googlecode.com/svn/ ...

  5. .Net Core如何在任意位置获取配置文件的内容

    前几天群里有人问,我想在程序里的任意位置读取appsetting.json里的配置,该怎么搞. 话不多说上源码 首先,要想读取配置文件我们要用到IConfiguration 接口,这个接口在Start ...

  6. Flask之蓝图的使用

    蓝图,听起来就是一个很宏伟的东西 在Flask中的蓝图 blueprint 也是非常宏伟的 它的作用就是将 功能 与 主服务 分开怎么理解呢? 比如说,你有一个客户管理系统,最开始的时候,只有一个查看 ...

  7. git创建使用1https://blog.csdn.net/Hanani_Jia/article/details/77950594

    这篇文章是我自己写的关于GitHub的内容,从我刚听到这个直到设置成功每一步都有详细的步骤来解释,其中有一些截图或者代码来自于网上. 首先,我先对GitHub来一个简单的介绍,GitHub有一个很强大 ...

  8. day 26 网络知识 01

    一.    c/s 架构: 客户端(client)/服务端(server)架构       服务端: 提供服务的      客户端: 享受服务的     B/S 架构:浏览器(browser)/服务端 ...

  9. Altium Designer常用快捷键

    一:Altium原理图快捷键:    Shift+左键选择    :实现多个目标选择    Ctrl+左键拖动    :保持连线拖动目标        Shift+c       :清除当前过滤(?? ...

  10. python学习——常用模块

    在学习常用模块时我们应该知道模块和包是什么,关于模块和包会单独写一篇随笔,下面先来了解有关在python中的几个常用模块. 一.什么是模块 常见的场景:一个模块就是一个包含了python定义和声明的文 ...