一。传输层的主要功能是什么?

分割并重新组装上层提供的数据流,为数据流提供端到端的传输服务。

二。传输层如何区分不同应用程序的数据流?

因为,对应传输层而言,它只需要知道目标主机上的哪个服务程序来响应这个程序,而不需要知道这个服务程序是干什么的。因此,我们只需要能够抽象的表示出来这些应用程序和服务程序即可。我们使用端口号来抽象标识每个网络程序。

传输层的TCP和UDP可以接收来自多个应用程序的数据流,用端口号标识他们,然后把他们送给Internet层处理;

同时TCP和UDP接收来自Internet层的数据包,用端口号区分他们,然后交给不同的应用程序。

因此:在同一IP地址(同一个目标主机)上不同的端口号是两个不同的链接。IP地址和端口号用来唯一的确定网络上数据的目的地。

三。传输层有哪些协议?


传输层的两大协议:TCP(传输控制协议)UDP(用户数据包协议)
TCP是一个可靠的面向链接的协议,UDP是不可靠的或者说无连接的协议。
可以用打电话和发短信来说明这种关系:

UDP就好似发短信,只管发出去,至于对方是不是空号(网络不可到达)能不能收到(丢包)等并不关心。

TCP好像打电话,双方要通话,首先,要确定对方不是开机(网络可以到达),然后要确定是不是没有信号(),然后还需要对方接听(通信链接)。

四。什么是UDP协议?

UDP数据包结构如下图所示

源端口(16)

目标端口(16)

报文长度(16)

校验和(16)

数据(可变)

UDP为应用程序提供的是一种不可靠的、无连接的分组交付,因此,UDP报文可能会出现丢失、乱序、重复、延时等问题。

因为它不提供可靠性,它的开销很小。(开销很小具体指什么?下文揭秘)

五。为什么有了UDP,还需要TCP?

问题4中已经说到,UDP为应用程序提供的是一种无连接、不可靠的分组交付。当网络硬件失效或者负担太重时,数据包可能就会产生丢失、重复、延时、乱序的现象。这些都会导致我们的通信不正常。如果让应用程序来担负差错控制的工作,无疑将给程序员带来许多复杂的工作,于是,我们使用独立的通信协议来保证通信的可靠性是非常必要的。

六。什么是TCP协议?

传输控制协议TCP是一个面向链接的、可靠的通信协议。

1. 在开始传输前,需要进行三次握手建立链接
2. 可靠性:在传输过程中,通信双方的协议模块继续进行通信
3. 通信结束后,通信双方都会使用改进的三次握手来关闭链接

TCP数据包结构如下图

源端口(16)

目标端口(16)

序号(32)

应答号(32)

头长度(4)

保留(6)

编码位(6)

窗口(16)

校验和(16)

紧急(16)

可选项(如果有,0或32)

数据(可变)

**七。怎么理解协议和程序?**

如同我们自定义的应用层协议一样:协议只是给出了一组规范,规定我们应该怎么样(按什么规则)保存数据。

在计算机间传输的永远都是二进制字节码(对于传输层,可以理解为传输的始终是下层的IP数据包),计算机中的程序通过对这些字节码进行逻辑分析、判断,来控制程序完成差错控制等功能。
至于解析这些字节码的程序,则可以有不同的实现,只要我们按照规则来解析,并作出相应的控制,我们大可以自己写个程序是实现相应功能。

知道了这些后,显然,我们也可以使用前面说的Jpcap,来自己实现一个基于Java的TCP或者UDP协议。可以参考Linux下的Tcp源码。

/net/ipv4/udp.c
/net/ipv4/datagram.c 
/net/ipv4/tcp_input.c 
/net/ipv4//tcp_output.c 
/net/ipv4/tcp.c

八。TCP是否真的有链接?

我们都知道,TCP通过完成三次握手来建立链接的,但是这种连接是面向虚电路的,是物理上不存在的,只是双方的TCP程序,逻辑上的认为建立了这样的链接

九。链接是如何建立的(逻辑上)?

假设:当我们在主机A上启动一个程序,通过TCP去链接主机B上的9091端口。

整个过程是怎么样的呢?逻辑上我们可以这么理解建立链接的过程:

1.SYN:seq=X;

1.1  A的TCP程序,为这个链接分配一个端口(设为9090)。
1.2 同时逻辑上的将TCP连接的状态设置为:正在连接。(通过在链接状态表中添加一条记录,记录中状态为:正在连接)

猜想:

TCP程序中, 应该有张表来保持链接的状态,其中每个状态应该有:

本机地址(IP加port)、对方地址、链接状态

1.3 同时,随机生成一个初始序列号X,生成一个TCP包,将初始化序列号X设置为TCP中的序列号,发送给主机B。

2.SYN:seq=Y ACK:ack=X+1;

2.1 B上TCP程序收到该数据包,查询9091端口状态,如果可以链接。
2.2 同样的,在逻辑上的将TCP连接的状态设置为:正在连接
2.3 同时,随机生成一个初始化序列号Y,根据接收的序列号X,生成应答号X+1,生成一个TCP包,将序列号和应答号分别设置到TCP包头中,将TCP数据包发给主机A。

3.SYN:seq=X+1 ACK:ack=Y+1.

3.1  A上的TCP程序接收到数据包,查询9090端口状态。
3.2 根据收到的SYN:seq=Y;ACK:ack=X+1; 封装一个TCP包 SYN:seq=x+1;ACK:ack=Y+1;发送给主机B。同时,TCP程序将链接状态表中该条记录状态设置为已连接。
3.3 主机B收到数据包,TCP程序将链接状态表中该条记录状态设置为已连接。

至此,一个TCP链接建立(三次握手)完成。
我们可以看到:
第一:传送的都是IP数据包,其实只是将收到的数据包交给TCP程序处理。
第二:链接状态,只是TCP程序中的一个逻辑状态。

十:所谓的建立TCP链接开销很大,具体是指什么?

从九中,很容易看出。要简历TCP链接,必须进行三次IP数据包的成功传输。

十一:三次握手的目的是什么?

TCP是面向链接的,在面向链接的环境中,开始传输数据之前,在两个中端之间必须先建立一个链接。建立链接的过程可以确保通信双方在发送应用程序数据包之前,都已经准备好了传送和接收数据。并且使通信双方统一了初始化序列号。

十二:TCP如何提供可靠性?

在传输过程中,通信双方的协议模块继续进行通信,从而确保了传输的可靠性。
针对乱序:在通过三次握手进行链接时,序列号被初始化。在传输过程中,TCP继续使用这个序列号来标记发送的每一个数据段,没传送一个数据段,序列号加一。接收方依据序列号重装收到的数据段。
针对丢包:在传输过程中,接收方收到一个数据段后,会用ACK应答码向发送端回复一个IP包进行应答,确认号ACK用来告诉发送端哪些数据包已经成功接收,发送方对未被应答的报文段提供重传。
针对重复:接收端收到数据段后,查看序列号,如果已经成功接收改数据包,则丢弃后面这个数据段。
针对延时:延时造成的第一个问题,就是数据包达到接收端时乱序。
当延时严重时,接收端一直未收到数据段,则不会回复ACK,发送端认为丢包,重发。

十三:什么是预期确认?什么是肯定确认与重新传输?哪些情况会重传?

1.确认号ACK会告诉发送端哪些数据段已经成功接收,并且确认号会向发送端指出接收端希望收到的下一个序列号。即,确实号ACK为上个数据序列号+1,这种机制称为预期确认

2.为了提高效率,我们在发送端,将数据段保存在缓冲区中,直道发送端收到来自接收端的确认号。这种机制被称为“肯定确认与重新传输”。

3.当发送端在给定时间间隔内收不到那个数据段的应答时,发送端就会重传那个数据段
情况1:网络延时/环路,数据段丢失
情况2:网络延时,数据段推迟到达
情况3:数据段成功到达,应答因为1.2不能达到。

十四: TCP中,序列号和应答号有哪些作用?

从以上10,11,12中,很明显的可以看到

      1. 依靠序列号重组数据段
      2. 依靠数据包消除网络中的重复包
      3. 依靠序列号和应答号进行差错重传,提高了TCP的可靠性

十六:为什么需要窗口技术?

前面我们已经说了,TCP的可靠性,是通过预期确认来实现的。即发送方发送一个数据段后,需要得到对方的确认后,才会发送下一个数据段。
因此,假设一个数据段大小为64KB(IP包最大值),一次发送和确认需要的时间为500MS,则,1S内,只能传送128KB的数据,如果带宽为1M,显然很浪费带宽。为了充分利用带宽,我们使用窗口技术。滑动窗口允许发送方在收到接收方的确认之前发送多个数据段。(窗口大小决定了在收到确认前可以发送的数据段数量)

十七:如何实现流量控制?

窗口数决定了当前传输的最大流量。当我们在传输过程中,通信双方可以根据网络条件动态协商窗口大小,调整窗口大小时,即可实现流量控制。(在TCP的每个确认中,除了ACK外,还包括一个窗口通知)

十八:UDP的开销很小,具体是指什么?

1.因为UDP是无连接的。在传输数据之前,不需要进行复杂的三次握手来建立连接。
2.在传输数据时,没有协议间通信流量(确认信号),也不需要浪费不必要的处理时间(接收确认信号再发一下)。
3;传输结束后,也不用再用改进的三次握手来端口连接。

十九:UDP数据包、TCP数据包大小如何确认?

    1. 无论TCP还是UDP数据包,都需要交给Internet层封装为IP包,而一个IP包,包头中的长度位为16位,所以IP包最大为2的16方,即65535(64KB还需要减去各种包头长度)。
    2. TCP因为面向流,且可以凭借序列号对大文件进行分段和重组,因此,TCP可以用来传输较大的文件。而UDP,如果要传输大于64KB的数据,则需要自己在应用层进行差错控制。
    3. 为了提高传输效率和减少网络通信量(协议间的通信),TCP也会一次传输足够多的数据。
    4. 因为MTU的存在,TCP包和UDP包不是越大越好。(在路由中分包,在接收端重组,加大路由与接收端负担,增大丢包概率。分组丢失,整个数据包重传。)

二十:UDP适用哪些环境?TCP适用哪些环境?

适合UDP的环境:
1.在高效可靠的网络环境中(不需要考虑网络不好导致的丢包、乱序、延时、重复等问题),因为UDP是无连接的服务,不用消耗不必要的网络资源(TCP中的协议间通信)和处理时间(预期确认需要的时间),从而效率要高的多。
2.在轻权通信中,当需要传输的数据量很小(可以装在一个IP数据包内)时。如果我们使用TCP协议,那么,先建立连接,一共需要发送3个IP数据包,然后数据传输,1个IP数据包,产生一个确认信号的IP包,然后关闭连接,需要传输5个IP数据包。使用TCP协议IP包的利用率为1/10。而使用UDP,只需要发送一个IP数据包。哪怕丢包(服务不成功),也可重新申请服务(重传)。

注:而且无论UDP还是TCP,传输的都是IP数据包。当网络环境不好导致丢包时,无论TCP还是UDP都会丢包,这是没有区别的。(如果考虑发送丢包,那么TCP效率更低),只是使用TCP,当连接建立成功后,TCP程序会进行可靠性控制。

UDP很适合这种客户机向服务器传送简单服务请求的环境。此类应用层协议包括TFTP ,  SNMP , DNS ,DHCP等。
3.在对实时性要求很强的通信中:在诸如实时视频直播等对实时性要求很高的环境中,从而允许一定量的丢包的情况下(直播比赛,前面丢失的包,重传出来已经意义不大了),UDP更适合。(可以根据具体需要通过应用层协议提供可靠性,不用像TCP那么严格。)

适合TCP协议的环境:

当网络硬件失效或者负担太重时,数据包可能就会产生丢失、重复、延时、乱序的现象。这些都会导致我们的通信不正常的时候。如果让应用程序来担负差错控制的工作,无疑将给程序员带来许多复杂的工作,于是,我们使用独立的通信协议来保证通信的可靠性是非常必要的。

TCP,UDP,IP总结的更多相关文章

  1. 三十天学不会TCP,UDP/IP编程--MAC地址和数据链路层

    这篇文章主要是来做(da)推(guang)介(gao)的!由于这两年接触到了比较多的这方面的知识,不想忘了,我决定把他们记录下来,所以决定在GitBook用半年时间上面写下来,这是目前写的一节,后面会 ...

  2. 三十天学不会TCP,UDP/IP网络编程-IP头格式祥述

    我又来了,这篇文章还是来做(da)推(guang)介(gao)我自己的!俗话说事不过三,我觉得我下次得换个说法了,不然估计要被厌恶了,但是我是好心呐,一定要相信我纯洁的眼神.由于这两年接触到了比较多的 ...

  3. 三十天学不会TCP,UDP/IP网络编程-ARP -- 连接MAC和IP

    继续来做(da)推(guang)介(gao)我自己的!由于这两年接触到了比较多的这方面的知识,不想忘了,我决定把他们记录下来,所以决定在GitBook用半年时间上面写下来,这是目前写的一节,目前已完成 ...

  4. http tcp udp ip 间的关系

    首先,我自己梳理一下,其实除了应对以后的笔试,还有需要应对的是自己在编程中对于api的选择,我在满足需求时采取哪种方案更好. 首先,我需要了解的是tcp/ip是一个协议组,有三大层: ip 对应于网络 ...

  5. TCP,UDP,IP包头格式及说明(zz)

    一.MAC帧头定义 /数据帧定义,头14个字节,尾4个字节/ typedef struct _MAC_FRAME_HEADER { ]; //目的mac地址 ]; //源mac地址 short m_c ...

  6. TCP & UDP & IP

    TCP和UDP的区别   TCP UDP 是否连接 面向连接 面向非连接 应用场合 可靠的 不可靠的 速度 慢 快 传送数据 字节流 数据报 是否可用于广播 否 是 为什么UDP比TCP快 不需要连接 ...

  7. 三十天学不会TCP,UDP/IP网络编程-UDP,从简单的开始

    如果对和程序员有关的计算机网络知识,和对计算机网络方面的编程有兴趣,欢迎去gitbook(https://www.gitbook.com/@rogerzhu/)star我的这一系列文章,虽然说现在这种 ...

  8. 三十天学不会TCP,UDP/IP网络编程-TraceRoute的哲学

    新年快乐,继续来部分粘贴复制我的这一系列文章啦,如果对和程序员有关的计算机网络知识,和对计算机网络方面的编程有兴趣,欢迎去gitbook(https://www.gitbook.com/@rogerz ...

  9. socket http tcp udp ip 协议

    Socket可以支持不同的传输层协议(TCP或UDP),当使用TCP协议进行连接时,该Socket连接就是一个TCP连接. socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作 ...

  10. 浅析TCP /UDP/ IP协议

    互连网早期的时候,主机间的互连使用的是NCP协议.这种协议本身有很多缺陷,如:不能互连不同的主机,不能互连不同的操作系统,没有纠错功能.为了改善这种缺点,大牛弄出了TCP/IP协议.现在几乎所有的操作 ...

随机推荐

  1. Spring Boot:定制自己的starter

    在学习Spring Boot的过程中,接触最多的就是starter.可以认为starter是一种服务——使得使用某个功能的开发者不需要关注各种依赖库的处理,不需要具体的配置信息,由Spring Boo ...

  2. a标签的嵌套

    1.a标签的嵌套 a标签不能嵌套,若a标签中嵌套了a标签,浏览器会自动添加结束符号,故不能嵌套 2.例子 编辑器中的代码 <a href="#">外层a标签<a ...

  3. hdfs基本思想

    1.hdfs的优缺点 (1)不适合大量小文件存储: (2)不适合并发写入,不支持文件随机修改:(只能append追加) (3)不支持随机读等低延时的访问方式 2.基本思想 主从结构 主节点, name ...

  4. javaWeb面试题(重要)

    1.Javaweb 技术的结构  1.1 技术结构图

  5. 任务调度框架kunka

    kunka kunka是一个任务调度框架.用户只需要在Task接口中实现自己要执行的功能,并且选择合适的执行器,放入TaskManager中,就可以了完成整个任务了. 实现细节 整个任务信息存放在内存 ...

  6. Vue基本指令

    模板对象 vue指令 一:模板对象 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...

  7. Linux System.map文件【转】

    转自:http://blog.csdn.net/ysbj123/article/details/51233618 当运行GNU链接器gld(ld)时若使用了"-M"选项,或者使用n ...

  8. xshell+xming连接服务器虚拟机启动mininet网络

    困于vnc连实验室的服务器虚拟机,一直出现页面不稳定的情况,然后本机虚拟机又带不起来,今天跟学弟交流,知道了ssh连接服务器的办法,心情好晴朗! xshell下载和安装,xshell使用 xshell ...

  9. OC 06 Block、数组高级

    主要内容: ⼀.Block语法 ⼆.Block使⽤ 三.Block实现数组排序 Block简介 Block:块语法,本质上是匿名函数(没有名称的函数) 标准C⾥面没有Block,C语⾔言的后期扩展版本 ...

  10. 【Java基础】一些问题

    1. HashSet是如何保证数据不重复的: 首先,HashSet添加元素的时候,底层是通过HashMap的put方法来实现的,而添加的元素,则是保存在了hashMap的key里,因为HashMap的 ...