并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了。以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定。不分享出来真是对不起party了。(party:我靠,关我嘛事啊?我跟你很熟么?)

来看一个实例,杭电1232畅通工程

首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……

以下面这组数据输入数据来说明

4 2

1 3

4 3

第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?

我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!

并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。


int pre[1000 ];
int find(int x)//查找根节点
{
int r=x;
while ( pre[r] != r )//返回根节点 r
r=pre[r]; int i=x , j ;
while( i != r ){//路径压缩
j = pre[i]; // 在改变上级之前用临时变量 j 记录下他的值
pre[i]= r ; //把上级改为根节点
i=j;
}
return r ;
} void join(int x,int y)//判断x y是否连通,如果已经连通,就不用管了,如果不连通,就把它们所在的连通分支合并起
{
int fx=find(x),fy=find(y);
if(fx!=fy)
pre[fx ]=fy;
}

为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int x)//查找我(x)的掌门
{
int r=x;//委托 r 去找掌门
while (pre[r]!=r)//如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =)
r=pre[r] ;// r 就接着找他的上级,直到找到掌门为止。
return r ;//掌门驾到~~~
}

再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)//我想让虚竹和周芷若做朋友
{
int fx=find(x),fy=find(y);//虚竹的老大是玄慈,芷若MM的老大是灭绝
if(fx!=fy)//玄慈和灭绝显然不是同一个人
pre[fx ]=fy;//方丈只好委委屈屈地当了师太的手下啦
}

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。

算法学习 并查集(Union-Find) (转)的更多相关文章

  1. 《程序员代码面试指南》第三章 二叉树问题 Tarjan算法与并查集解决二叉树节点间最近公共祖先的批量查询问题

    题目待续.... Tarjan算法与并查集解决二叉树节点间最近公共祖先的批量查询问题 java代码

  2. LCA(最近公共祖先)离线算法Tarjan+并查集

    本文来自:http://www.cnblogs.com/Findxiaoxun/p/3428516.html 写得很好,一看就懂了. 在这里就复制了一份. LCA问题: 给出一棵有根树T,对于任意两个 ...

  3. 【lazy标记得思想】HDU3635 详细学习并查集

    部分内容摘自以下大佬的博客,感谢他们! http://blog.csdn.net/dm_vincent/article/details/7769159 http://blog.csdn.net/dm_ ...

  4. 并查集(Union/Find)模板及详解

    概念: 并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的Kruskal 算法和求最近公共祖先等. 操作: 并查集的基本操作有两个 ...

  5. hihocoder1067 最近公共祖先·二(tarjin算法)(并查集)

    #1067 : 最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站,这个网站 ...

  6. ZH奶酪:【数据结构与算法】并查集基础

    1.介绍 并查集是一种树型数据结构,用于处理一些不相交集合的合并问题. 并查集主要操作有: (1)合并两个不相交集合: (2)判断两个元素是否属于同一个集合: (3)路径压缩: 2.常用操作 用fat ...

  7. 编程算法 - 食物链 并查集 代码(C)

    食物链 并查集 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有N仅仅动物, 分别编号为1,2,...,N. 全部动物都属于A,B,C中的一种 ...

  8. POJ 1611 The Suspects 并查集 Union Find

    本题也是个标准的并查集题解. 操作完并查集之后,就是要找和0节点在同一个集合的元素有多少. 注意这个操作,须要先找到0的父母节点.然后查找有多少个节点的额父母节点和0的父母节点同样. 这个时候须要对每 ...

  9. hihocoder1069 最近公共祖先·三(tarjin算法)(并查集)

    #1069 : 最近公共祖先·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho使用了Tarjan算法来优化了他们的“最近公共祖先”网站,但是 ...

随机推荐

  1. windows安装logstash-input-jdbc并使用其导入MMSQL数据

    1.安装logstash 2.修改logstash 文件夹下Gemfile文件 将source改为:https://gems.ruby-china.org 3.进入bin目录 执行logstash-p ...

  2. 第三模块:面向对象&网络编程基础 第2章 网络编程

    01-计算机基础 02-什么是网络 03-五层协议详解 04-传输层详解 05-什么是Socket 06-基于socket实现简单套接字通信 07-在简单套接字基础上加上通信循环 08-客户端与服务端 ...

  3. 适配iPhoneX、iPhoneXs、iPhoneXs Max、iPhoneXr 屏幕尺寸及安全区域

    此篇文章是对上一篇文章(http://www.ifiero.com/index.php/archives/611)的进一步补充,主要说明如何适配Apple的最新三款手机iPhoneXs.iPhoneX ...

  4. LeetCode 107 ——二叉树的层次遍历 II

    1. 题目 2. 解答 与 LeetCode 102 --二叉树的层次遍历 类似,我们只需要将每一层的数据倒序输出即可. 定义一个存放树中数据的向量 data,一个存放树的每一层数据的向量 level ...

  5. solidity 十六进制字符串转十六进制bytes

    pragma solidity ^0.4.16; contract Metadata { // 十六进制字符串转换成bytes function hexStr2bytes(string data)re ...

  6. BluetoothDevice详解

    一. BluetoothDevice简介 1. 继承关系 public static Class BluetoothDevice extends Object implement Parcelable ...

  7. Python 循环语句和运算符

    while 循环 while 条件 : //条件为True时,执行while下带有缩进的语句 语句1 语句2 语句3 for循环 for循环可以用来遍历某一对象(遍历:通俗点说,就是把这个循环中的第一 ...

  8. lintcode-141-x的平方根

    141-x的平方根 实现 int sqrt(int x) 函数,计算并返回 x 的平方根. 样例 sqrt(3) = 1 sqrt(4) = 2 sqrt(5) = 2 sqrt(10) = 3 挑战 ...

  9. VS2012或VS2010 工具栏中无法显示DevExpress控件

    进入命令提示符 跳转到Dev控件安装目录,如[目录D:\Program Files (x86)\DevExpress\DXperience 12.2\Tools]下, 然后执行命令: ToolboxC ...

  10. 【.NET】- Task.Run 和 Task.Factory.StartNew 区别

    Task.Run 是在 dotnet framework 4.5 之后才可以使用, Task.Factory.StartNew 可以使用比 Task.Run 更多的参数,可以做到更多的定制. 可以认为 ...