大力推荐博客:

傅里叶变换(FFT)学习笔记

一、多项式乘法:

我们要明白的是:

FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度。(虽然常数大)

FFT=DFT+IDFT

DFT:

本质是把多项式的系数表达转化为点值表达。因为点值表达,y可以直接相乘。点值表达下相乘的复杂度是O(n)的。

我们分别对两个多项式求x为$\omega_n^i$时的y值。

然后可以O(n)求出乘积多项式x为$\omega_n^i$时的y值。

求法:

把F(x)奇偶分类。

$FL(x)=a_0+a_2x+...+a_{n-2}x^{n/2-1}$

$FR(x)=a_1+a_3x+...+a_{n-1}x^{n/2-1}$

$F(x)=FL(x^2)+xFR(x^2)$

带入那些神奇的单位根之后,
发现有:

$0<=k<n/2$

$F(\omega_n^k)=Fl(\omega_{n/2}^k)+\omega_{n}^kFR(\omega_{n/2}^k)$

$F(\omega_n^{k+n/2})=Fl(\omega_{n/2}^k)-\omega_{n}^kFR(\omega_{n/2}^k)$

我们只要知道Fl、FR多项式在那n/2个位置的点值,那么就可以知道F那n个位置的点值了。

分治就可以处理出来。

IDFT:

经过一系列矩阵的运算之后,,,,

可以得到:

$b_k=[(ω_n^{-k})^0y_0+(ω_n^{-k})^1y_1+(ω_n^{-k})^2y_2+...+(ω_n^k)^{n-1}y_{n-1}]/n$

可以把y当做系数,

只要知道,当x是一系列w的时候,值是多少。

那么就求出来了$b_k$

FFT再写一遍。

注意这里带入的是$ω_n^{-k}$

开始的$tmp$有所不同

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=1e6+;
const double Pi=acos(-);
struct node{
double x,y;
node(){}
node(double xx,double yy){x=xx,y=yy;}
node operator +(const node &b){
return node(x+b.x,y+b.y);
}
node operator -(const node &b){
return node(x-b.x,y-b.y);
}
node operator *(const node &b){
return node(x*b.x-y*b.y,x*b.y+y*b.x);
}
}a[*N],b[*N];
int n,m;
int r[*N];
void FFT(node *f,short op){
for(reg i=;i<n;++i){
if(i<r[i]){
node tmp=f[i];
f[i]=f[r[i]];
f[r[i]]=tmp;
}
}
for(reg p=;p<=n;p<<=){
int len=p/;
node tmp(cos(Pi/len),op*sin(Pi/len));
for(reg k=;k<n;k+=p){
node buf(,);
for(reg l=k;l<k+len;++l){
node tt=buf*f[l+len];
f[l+len]=f[l]-tt;
f[l]=f[l]+tt;
buf=buf*tmp;
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(reg i=;i<=n;++i) scanf("%lf",&a[i].x);
for(reg i=;i<=m;++i) scanf("%lf",&b[i].x);
for(m=n+m,n=;n<=m;n<<=);
for(reg i=;i<n;++i){
r[i]=r[i>>]>>|((i&)?n>>:);
}
FFT(a,);FFT(b,);
for(reg i=;i<n;++i) b[i]=a[i]*b[i];
FFT(b,-);
for(reg i=;i<=m;++i) printf("%.0lf ",fabs(b[i].x)/n);
return ;
} }
int main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/11/21 8:05:13
*/

多项式乘法

关键点就是在于,用了单位根这个东西,可以避免平方、避免爆long long 以及精度损失的情况下,再利用乘法分配律,可以O(nlogn)得到多项式的点值表达。

例题:

P3338 [ZJOI2014]力

思路:要用FFT,必然要化成多项式卷积的形式

即形如:$h[j]=\sum_{i=0}^j f[i]*g[j-i]$

这样的话,我们把f,g分别作为两个多项式的系数,那么,发现,h[j]的值,恰好是f,g两个多项式乘积得到的多项式的第j+1项的系数。(考虑次数j是怎么来的)

就可以FFT优化这个n^2的算式了。

对于这个题:

令$f[i]=q[i]$,$g[i]=\frac{1}{i*i}$

特别的;有$g[0]=0$

则有$E[j]=\sum_{i=0}^jf[i]*g[j-i]-\sum_{i=j}^nf[i]*g[i-j]$

我们可以分开算,

后面的减法部分类似一个后缀,把$f$数组$reverse$一下,就变成了前缀了。$g$数组不用,因为距离要保持这样。

于是;

$E[j]=\sum_{i=0}^jf[i]*g[j-i]-\sum_{i=0}^{n-j}f'[i]*g[n-j-i]$

两次$FFT$即可

值得注意的是:

1.g数组赋值的时候,i*i可能会爆int,导致精度误差。所以,写成1/i/i比1/(i*i)要好得多。(30pts->100pts)

2.乘积多项式一定要n+n项都算出来,因为最后的插值和每一项的点值都有关系。即使我们只关心前n项。

代码:

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=+;
const double Pi=acos(-);
struct node{
double x,y;
node(){}
node(double xx,double yy){
x=xx;y=yy;
}
}f[*N],g[*N],h[*N];
double q[*N];
int r[*N];
int n,m;
node operator+(const node &a,const node &b){
return node(a.x+b.x,a.y+b.y);
}
node operator-(const node &a,const node &b){
return node(a.x-b.x,a.y-b.y);
}
node operator*(const node &a,const node &b){
return node(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
void FFT(node *f,short op){
for(reg i=;i<n;++i){
if(i<r[i]){
node tmp=f[i];
f[i]=f[r[i]];
f[r[i]]=tmp;
}
}
for(reg p=;p<=n;p<<=){
int len=p/;
node tmp=node(cos(Pi/len),op*sin(Pi/len));
for(reg k=;k<n;k+=p){
node buf=node(,);
for(reg l=k;l<k+len;++l){
node tt=buf*f[l+len];
f[l+len]=f[l]-tt;
f[l]=f[l]+tt;
buf=buf*tmp;
}
}
}
}
int main(){
scanf("%d",&m);
for(reg i=;i<=m;++i){
scanf("%lf",&q[i]);
if(i)g[i]=node((double)/(double)i/(double)i,);
}
for(n=;n<=*m;n<<=);
//cout<<" nn "<<n<<endl;
for(reg i=;i<n;++i){
f[i]=node(q[i],);
//cout<<f[i].x<<" ";
} //g[0]=node(0,0);
for(reg i=;i<n;++i){
r[i]=(r[i>>]>>)|((i&)?(n>>):);
} FFT(f,);
FFT(g,);
for(reg i=;i<n;++i) f[i]=g[i]*f[i];
FFT(f,-); reverse(q+,q+n);
for(reg i=;i<n;++i){
h[i]=node(q[i],);
}
FFT(h,);
for(reg i=;i<n;++i) h[i]=h[i]*g[i];
FFT(h,-); for(reg i=;i<=m;++i){
node ans=f[i]-h[n-i];
printf("%lf\n",ans.x/n);
}
return ;
} }
int main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/11/21 10:17:15
*/

FFT优化高精乘法:

把数字看成系数,把10^k看做是x^k,那么就可以得到多项式。

这两个多项式相乘,得到的多项式,各个系数通过进位变成个位数之后,直接输出系数即可。

值得注意的是:

浮点数四舍五入赋值:

$a=floor(b+0.5);$

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=+;
const double Pi=acos(-);
struct node{
double x,y;
node(){}
node(double xx,double yy){
x=xx;y=yy;
}
}a[*N],b[*N];
char p[N],q[N];
int c[*N];
int n,m;
int r[*N];
node operator+(node a,node b){
return node(a.x+b.x,a.y+b.y);
}
node operator-(node a,node b){
return node(a.x-b.x,a.y-b.y);
}
node operator*(node a,node b){
return node(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
void FFT(node *f,short op){
for(reg i=;i<n;++i){
if(i<r[i]){
node tmp=f[i];
f[i]=f[r[i]];
f[r[i]]=tmp;
}
}
for(reg p=;p<=n;p<<=){
int len=p/;
node tmp=node(cos(Pi/len),op*sin(Pi/len));
for(reg k=;k<n;k+=p){
node buf=node(,);
for(reg l=k;l<k+len;++l){
node tt=buf*f[l+len];
f[l+len]=f[l]-tt;
f[l]=f[l]+tt;
buf=buf*tmp;
}
}
}
}
int main(){
scanf("%d",&m);
scanf("%s",p);scanf("%s",q);
for(reg i=;i<m;++i){
a[m-i-].x=p[i]-'';
b[m-i-].x=q[i]-'';
}
for(m=m+m,n=;n<m;n<<=);
for(reg i=;i<n;++i){
r[i]=r[i>>]>>|((i&)?n>>:);
}
FFT(a,);FFT(b,); for(reg i=;i<n;++i) b[i]=a[i]*b[i];
FFT(b,-);
for(reg i=;i<n;++i){
c[i]=floor(b[i].x/n+0.5);
} int x=;
for(reg i=;i<n;++i){
c[i]+=x;
x=(int)c[i]/;
c[i]%=;
}
while(c[n-]==&&n>=) --n;
for(reg i=n-;i>=;--i){
printf("%d",c[i]);
}
return ;
} }
int main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/11/21 16:30:14
*/

FFT高精

[学习笔记]FFT——快速傅里叶变换的更多相关文章

  1. 【学习笔记】快速傅里叶变换(FFT)

    [学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) ...

  2. [学习笔记]NTT——快速数论变换

    先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...

  3. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  4. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  5. Django RF:学习笔记(8)——快速开始

    Django RF:学习笔记(8)——快速开始 安装配置 1.使用Pip安装Django REST Framework: pip install djangorestframework 2.在Sett ...

  6. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  7. 「算法笔记」快速傅里叶变换(FFT)

    一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个 ...

  8. [学习笔记]FWT——快速沃尔什变换

    解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...

  9. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

随机推荐

  1. uvaoj1586Molar mass(暴力)

    An organic compound is any member of a large class of chemicalcompounds whose molecules contain carb ...

  2. Linux命令应用大词典-第10章 Shell相关命令

    10.1 commond:抑制正常的Shell函数查找 10.2 exec:使用执行命令替换当前的shell进程 10.3 bash:GNU的Bourne-Again Shell解释器 10.4 bu ...

  3. Unity Lighting - Lighting overview 照明概述

    Lighting overview 照明概述     In order to calculate the shading of a 3D object, Unity needs to know the ...

  4. Spring Boot 示例项目

    Spring Boot 基于注解式开发 maven REST 示例项目    项目地址:https://github.com/windwant/spring-boot-service    项目地址: ...

  5. 【转】Buff机制及其实际运用

    转自 http://bbs.gameres.com/forum.php?mod=viewthread&tid=215027 首先我想说的是,这是一套机制,并不是单独的一个系统,所谓机制就是一种 ...

  6. [Clr via C#读书笔记]Cp14字符字符串和文本处理

    Cp14字符字符串和文本处理 字符 System.Char结构,2个字节的Unicode,提供了大量的静态方法:可以直接强制转换成数值: 字符串 使用最频繁的类型:不可变:引用类型,在堆上分配,但是使 ...

  7. solidity合约详解

    Solidity 是一个面向合约的高级语言,其语法类似于JavaScript .是运行在以太坊虚拟机中的代码.这里我们用的是remix编译环境.是一个在线的编译环境.地址为http://remix.e ...

  8. this指针与const成员函数

    this指针的类型为:classType *const      // 即指向类类型非常量版本的常量指针 所以,我们不能把this绑定到一个常量对象上 ===>  不能在一个常量对象上调用普通的 ...

  9. Thunder——基于NABCD评价“欢迎来怼”团队作品

    基于NABCD N——need需求 对于开设了软件工程课并且正在进行教学活动的老师和同学,除了在写作业时会打开电脑进行操作,平时我们更希望可以通过一些简单方便的方法来查看有关作业的内容,比如查看一下老 ...

  10. lintcode-141-x的平方根

    141-x的平方根 实现 int sqrt(int x) 函数,计算并返回 x 的平方根. 样例 sqrt(3) = 1 sqrt(4) = 2 sqrt(5) = 2 sqrt(10) = 3 挑战 ...