注意:包含Python层的网络只支持单个GPU训练!!!!!

  Caffe 使得我们有了使用Python自定义层的能力,而不是通常的C++/CUDA。这是一个非常有用的特性,但它的文档记录不足,难以正确实现本演练将向您展示如何使用DIGHT来学习实现Python层。

注意:这个特性(自定义python层)在你是使用Cmake编译Caffe或者使用Deb 包来安装Caffe的时候自动被包含。如果你使用Make,你将需要将你的Makefile.config中的"WITH_PYTHON_LAYER := 1"解注释来启用它。

给MNIST添加遮挡

  对于这个例子,我们将在MNIST数据集上训练LeNet,但是我们将建立一个python层,来实现在图片喂进网络之前,截取掉它的四分之一。这模拟遮挡的数据,这样将会训练出一个对遮挡更加鲁棒的模型。

  比如变成

创建数据集

首先,仿照这个教程(https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md#creating-a-dataset)来使用DIGITS创建MNIST数据集(假设你还没有创建)

创建Python文件

接下来你将创建一个包含你的Pyhon层定义的Python文件。打开一个文本编辑器,然后创建一个包含如下内容的文件。

import caffe
import random class BlankSquareLayer(caffe.Layer): def setup(self, bottom, top):
assert len(bottom) == 1, 'requires a single layer.bottom'
assert bottom[0].data.ndim >= 3, 'requires image data'
assert len(top) == 1, 'requires a single layer.top' def reshape(self, bottom, top):
# Copy shape from bottom
top[0].reshape(*bottom[0].data.shape) def forward(self, bottom, top):
# Copy all of the data
top[0].data[...] = bottom[0].data[...]
# Then zero-out one fourth of the image
height = top[0].data.shape[-2]
width = top[0].data.shape[-1]
h_offset = random.randrange(height/2)
w_offset = random.randrange(width/2)
top[0].data[...,
h_offset:(h_offset + height/2),
w_offset:(w_offset + width/2),
] = 0 def backward(self, top, propagate_down, bottom):
pass
其中,top和bottom是包含一个或者多个blob的列表或者数组,访问其中的每一个blob使用下标index,如top[index],访问其中的数据使用top[index].data,也就是一个四维向量[N,C,H,W]。

创建一个模型

注意:如果你以前没有使用DIGITS创建一个模型,在创建之前,你可以参照教程(https://github.com/NVIDIA/DIGITS/blob/master/docs/GettingStarted.md#training-a-model)学习。
  • 点击主页上的 New Model > Images > Classification
  • 从数据集列表中选择MNIST数据集。
  • 单击“Use client side file”,并选择先前创建的Python文件。
  • 点击LeNet under Standard Networks > Caffe
  • 点击右边显示的 Customize 链接。

 

这将把我们带到一个窗口,我们可以自定义LeNet来添加自定义的Python层。我们将在scale层和conv层之间插入我们的层。找到这些层(从顶部的几行),并插入这段prototxt代码的片段:

layer {
name: "blank_square"
type: "Python"
bottom: "scaled"
top: "scaled"
python_param {
module: "digits_python_layers"
layer: "BlankSquareLayer"
}
}

当你点击Visualize,你将看到如下图:

然后给模型一个名字,点击Create。你将会看到模型训练会话开始。如果你注意,你你将会发现这个模型会比默认的LeNet网络精度低,这是为什么呢?

 注意:当前的caffe版本不支持在有Python层的网络上使用多GPU。如果你向使用Python层,那么你需要使用但GPU来训练。详见:https://github.com/BVLC/caffe/issues/2936

测试模型

现在开始比较有趣的部分。在MNIST测试集中选择一张图片,然后将它上传到 Test a single image(在页面的底下)

然后点击Show visualizations 和 statistics! 原始的图片将显示在左上,然后是它的预测类型。在Visualization 列,你会看到减去均值的图像作为数据激活的结果。

就在它下面,你会看到将图像从[0~255 ]缩小到[-1~1 ]的结果。你也会看到一个随机的四分之一的图像已经被删除-这是得益于我们的Python层!

注意:第二个激活显示为彩色热图,即使底层数据仍然是单通道的,并且可以显示为灰度图像。“数据”激活被视为一种特殊情况,所有其他激活都被转换为热图。

在Caffe中使用 DIGITS(Deep Learning GPU Training System)自定义Python层的更多相关文章

  1. TVM优化Deep Learning GPU算子

    TVM优化Deep Learning GPU算子 高效的深度学习算子是深度学习系统的核心.通常,这些算子很难优化,需要HPC专家付出巨大的努力. 端到端张量IR / DSL堆栈TVM使这一过程变得更加 ...

  2. 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角

    [论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys  ...

  3. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  4. caffe: test code for Deep Learning approach

    #include <stdio.h> // for snprintf #include <string> #include <vector> #include &q ...

  5. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记

    第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[

  6. Top Deep Learning Projects in github

    Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by sta ...

  7. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  8. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

随机推荐

  1. CSS3 transform rotate(旋转)锯齿/元素抖动模糊的解决办法

    使用CSS3 3D transforms,通过GPU来渲染,能有效的起到抗锯齿效果.只要在CSS3 transform属性中加入translateZ(0).例:-webkit-transform: r ...

  2. 51nod 1304 字符串的相似度(exkmp)

    拓展kmp裸题 自己跟自己匹配即可 模板测试=v= #include <iostream> #include <cstring> using namespace std; ; ...

  3. 【题解】CF#229 E-Gifts

    尽管是一道E题,但真心并不很难~不难发现,有一些物品是一定要被选择的,我们所需要决策的仅仅只有那几个有重复价值的物品. 而不同名字之间的概率并不互相影响,所以我们有 \(f[i][j]\) 表示名字为 ...

  4. [洛谷P5166]xtq的口令

    题目大意:给出一张有向图,保证任何时候边都是从编号大的向编号小连.两个操作: $1\;l\;r:$表示若编号在区间$[l,r]$内的点被染色了,问至少还需要染多少个点才可以使得整张图被染色.一个点会被 ...

  5. BZOJ5343 & 洛谷4602 & LOJ2555:[CTSC2018]混合果汁——题解

    https://www.luogu.org/problemnew/show/P4602 https://loj.ac/problem/2555 https://www.lydsy.com/JudgeO ...

  6. HDU.2503 a/b + c/d (分式化简)

    a/b + c/d Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  7. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  8. android getpost代码

    GetPostUtil public class GetPostUtil { /** * 向指定URL发送GET方法的请求 * * @param url * 发送请求的URL * @param par ...

  9. JavaScript中的valueOf与toString方法

    基本上,所有JS数据类型都拥有valueOf和toString这两个方法,null除外.它们俩解决javascript值运算与显示的问题. JavaScript 的 valueOf() 方法 valu ...

  10. Java中equals和==的区别?为什么重写equals方法后,一定要重写hashCode方法?

    首先明确一点,equals是方法,==是操作符. 1. 如果比较的是基本数据类型: 只讨论==,因为equals是不存在的,因为java中基本数据类型不能调用method的. 2. 如果比较的是引用类 ...