【bzoj4417】[Shoi2013]超级跳马 矩阵乘法
题目描述
输入
输出
样例输入
3 5
样例输出
10
题解
矩阵乘法
设 $f[i][j]$ 表示跳到 $(i,j)$ 的方案数,那么 $f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1]+f[i-2k+1][j]+f[i-2k+1][j+1]$。
那么我们维护两个前缀和:一个是与当前列相差为偶数的 $s1[i][j]$ 、一个是相差为奇数的 $s2[i][j]$ 。
当转移时如下图(红色为相差为偶数的 $s1$ ,蓝色为相差为奇数的 $s2$ ):
显然多出来的一个体现在 $s1[i+1]$ 上,与 $i+1$ 相差为奇数就与 $i$ 相差为偶数,由 $s1[i]$ 转移;而 $s2[i+1]$ 相对于 $s1[i]$ 没有改变。
于是就有 $s1[i+1][j]=s2[i][j]+s1[i][j-1]+s1[i][j]+s1[i][j+1]\ ,\ s2[i+1][j]=s1[i][j]$
发现这个式子可以使用矩阵乘法来加速递推,因此直接矩乘即可。最后的答案就是前缀相减 $s1[m][n]-s2[m-1][n]$
时间复杂度 $O((2n)^3\log m)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 30011
using namespace std;
int n;
struct data
{
int v[105][105];
data() {memset(v , 0 , sizeof(v));}
int *operator[](int a) {return v[a];}
data operator*(data &a)
{
data ans;
int i , j , k;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
for(k = 1 ; k <= n ; k ++ )
ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % mod;
return ans;
}
}I , A , B;
data pow(data x , int y)
{
data ans;
int i;
for(i = 1 ; i <= n ; i ++ ) ans[i][i] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
int main()
{
int m , i;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) I[i][i] = I[i + n][i] = I[i][i + n] = 1;
for(i = 1 ; i < n ; i ++ ) I[i + 1][i] = I[i][i + 1] = 1;
n <<= 1 , A = pow(I , m - 2) , B = A * I;
printf("%d\n" , (B[1][n >> 1] - A[1][n] + mod) % mod);
return 0;
}
【bzoj4417】[Shoi2013]超级跳马 矩阵乘法的更多相关文章
- BZOJ4417: [Shoi2013]超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- [BZOJ 4417][Shoi2013]超级跳马
4417: [Shoi2013]超级跳马 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 379 Solved: 230[Submit][Status ...
- 洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- P3990 [SHOI2013]超级跳马
传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...
- BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...
- [Shoi2013]超级跳马(DP+矩阵乘法)
设f[i][j]表示方案数,显然有一个O(m2n)的暴力DP法,但实际上可以按距离当前位置的奇偶性分成s1[i][j]和s2[i][j],然后这个暴力DP可以优化到O(nm)的暴力.于是有这样的递推式 ...
- 【BZOJ4417】: [Shoi2013]超级跳马
题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...
- [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
随机推荐
- 破解使用SMB协议的Windows用户密码:acccheck
一.工作原理 Acccheck是一款针对微软的SMB协议的探测工具(字典破解用户名和密码),本身不具有漏洞利用的能力. SMB协议:SMB(Server Message Block)通信协议主要是作为 ...
- Ajax跨域请求怎么解决?
前言 项目中需要将第三方系统中,对应用户的代办消息集成到系统中.对方提供了获取对应用户的接口url,但是由于两边的系统是部署到客户现场不同IP的虚机上的,所以进行ajax请求的时候是属于跨域请求的.之 ...
- Android Stadio配置了gralde的本地路径,但是windos 命令行还是会下载gradle
如下图: 已经在stadio 里面设置了gradle 的路径,但是在cmd 命令行里面不会去用这个路径. 解决方案:需要在环境变量里面设置一个gradle home GRADLE_USER_HOME ...
- elasticsearch安装中文分词器
1. 分词器的安装 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/rele ...
- Ajax中post请求和get请求的区别
首先提出两点Post比Get大的不同地方 1.post请求浏览器每次不会缓存,每次都会重新请求,而get请求不要缓存的时候,需要手动设置 写上xhr.setRequestHeader("If ...
- Consul初体验
Preface Today I'm gonna implement a consul in my environment to discover service of MySQL da ...
- JMeter自学笔记2-图形界面介绍
一.写在前面的话: 上篇我们已经学会了如何安装JMeter和打开JMeter,那么这篇我们将对JMeter的图形界面做一个简单的介绍.大家只要简单的了解即可,无需死记硬背,在今后的学习和使用中慢慢熟悉 ...
- 使用advanced_installer将.net web程序打包为安装程序
当项目开发完成之后,需要给客户使用时,总不能将发布后的文件全部放一起压缩后直接给客户吧,然后客户需要自行搭建环境修改配置等等,体验太差了,这时候我们就需要使用一种打包工具了,查了一些资料之后,我选择使 ...
- 韦大仙--python对文件操作 2--写入与修改
请大家看一段代码: yesterday2是我之前上个帖子创建的文件,为了方便大家看清我把本来的代码复制到下面: coding=utf-8 f=open("yesterday2",& ...
- eos教程如何创建eos测试账号并且使用scatter插件
EOS代币租赁平台 --- Chintai平台已经在Jungle测试网络上部署了,欢迎大家来体验. 地址见: Chintai 公测版 官网是: Chintai 目前测试网络上面需要用到Scatter插 ...