题目描述

现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角。每一步它向右跳奇数列,且跳到本行或相邻行。跳越期间,马不能离开棋盘。例如,当n = 3, m = 10时,下图是一种可行的跳法。
 
试求跳法种数mod 30011。

输入

仅有一行,包含两个正整数n, m,表示棋盘的规模。

输出

仅有一行,包含一个整数,即跳法种数mod 30011。

样例输入

3 5

样例输出

10


题解

矩阵乘法

设 $f[i][j]$ 表示跳到 $(i,j)$ 的方案数,那么 $f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1]+f[i-2k+1][j]+f[i-2k+1][j+1]$。

那么我们维护两个前缀和:一个是与当前列相差为偶数的 $s1[i][j]$ 、一个是相差为奇数的 $s2[i][j]$ 。

当转移时如下图(红色为相差为偶数的 $s1$ ,蓝色为相差为奇数的 $s2$ ):

显然多出来的一个体现在 $s1[i+1]$ 上,与 $i+1$ 相差为奇数就与 $i$ 相差为偶数,由 $s1[i]$ 转移;而 $s2[i+1]$ 相对于 $s1[i]$ 没有改变。

于是就有 $s1[i+1][j]=s2[i][j]+s1[i][j-1]+s1[i][j]+s1[i][j+1]\ ,\ s2[i+1][j]=s1[i][j]$

发现这个式子可以使用矩阵乘法来加速递推,因此直接矩乘即可。最后的答案就是前缀相减 $s1[m][n]-s2[m-1][n]$

时间复杂度 $O((2n)^3\log m)$

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <algorithm>
  4. #define mod 30011
  5. using namespace std;
  6. int n;
  7. struct data
  8. {
  9. int v[105][105];
  10. data() {memset(v , 0 , sizeof(v));}
  11. int *operator[](int a) {return v[a];}
  12. data operator*(data &a)
  13. {
  14. data ans;
  15. int i , j , k;
  16. for(i = 1 ; i <= n ; i ++ )
  17. for(j = 1 ; j <= n ; j ++ )
  18. for(k = 1 ; k <= n ; k ++ )
  19. ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % mod;
  20. return ans;
  21. }
  22. }I , A , B;
  23. data pow(data x , int y)
  24. {
  25. data ans;
  26. int i;
  27. for(i = 1 ; i <= n ; i ++ ) ans[i][i] = 1;
  28. while(y)
  29. {
  30. if(y & 1) ans = ans * x;
  31. x = x * x , y >>= 1;
  32. }
  33. return ans;
  34. }
  35. int main()
  36. {
  37. int m , i;
  38. scanf("%d%d" , &n , &m);
  39. for(i = 1 ; i <= n ; i ++ ) I[i][i] = I[i + n][i] = I[i][i + n] = 1;
  40. for(i = 1 ; i < n ; i ++ ) I[i + 1][i] = I[i][i + 1] = 1;
  41. n <<= 1 , A = pow(I , m - 2) , B = A * I;
  42. printf("%d\n" , (B[1][n >> 1] - A[1][n] + mod) % mod);
  43. return 0;
  44. }

【bzoj4417】[Shoi2013]超级跳马 矩阵乘法的更多相关文章

  1. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  2. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

  3. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  4. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  5. P3990 [SHOI2013]超级跳马

    传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...

  6. BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...

  7. [Shoi2013]超级跳马(DP+矩阵乘法)

    设f[i][j]表示方案数,显然有一个O(m2n)的暴力DP法,但实际上可以按距离当前位置的奇偶性分成s1[i][j]和s2[i][j],然后这个暴力DP可以优化到O(nm)的暴力.于是有这样的递推式 ...

  8. 【BZOJ4417】: [Shoi2013]超级跳马

    题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...

  9. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

随机推荐

  1. 【NIS】深入了解NIS

    1  简介 NIS( NetworkInformation Service)提供了一个网络黄页的功能,当用户登录系统时,Linux系统会到NIS主机上去寻找用户使用的帐号密码信息加以比对,以提供用户登 ...

  2. C#如何使用反射实现通过字符串创建类

    在做项目中碰到一个问题,就是如何在知道一个类的名字,如何创建这个类呢.做的一个小测试,直接贴代码了. using System; using System.Collections.Generic; u ...

  3. iOS SSL Pinning 保护你的 API

    随着互联网的发展,网站全面 https 化已经越来越被重视,做为 App 开发人员,从一开始就让 API 都走 SSL 也是十分必要的.但是光这样就足够了吗? SSL 可以保护线上 API 数据不被篡 ...

  4. redis 问题记录

    摘抄来自:https://zhuoroger.github.io/ 1.slowlog和排队延时 slowlog是排查性能问题关键监控指标.它是记录Redis queries运行时间超时特定阀值的系统 ...

  5. Ubuntu Server 下将HTML页面转换为PNG图片

    零.前言 最近做一个网站,需要将网页转换为图片.由于服务器是Ubuntu Server,没有图形界面,所以实现的过程中遇到了很多问题.记录下来备用. 一.安装CutyCapt CutyCapt是一个可 ...

  6. react-native android 初始化问题

    最近开始接触rn,官方起手,装了一堆工具,然后启动项目的时候出现了一堆问题,这里针对我遇到的一些问题提供一些解决方案. 本人开发环境mac,在启动ios的时候没啥大问题,可以直接启动,这里提示一点,因 ...

  7. Java开发工程师(Web方向) - 04.Spring框架 - 第1章.Spring概述

    第1章.Spring概述 Spring概述 The Spring Framework is a lightweight solution and a potential one-stop-shop f ...

  8. (转)GEM -次表面散射的实时近似

    次表面散射(Subsurface Scattering),简称SSS,或3S,是光射入非金属材质后在内部发生散射, 最后射出物体并进入视野中产生的现象, 即光从表面进入物体经过内部散射,然后又通过物体 ...

  9. mahout协同过滤算法各接口

    Mahout协同过滤算法 Mahout使用了Taste来提高协同过滤算法的实现,它是一个基于Java实现的可扩展的,高效的推荐引擎.Taste既实现了最基本的基于用户的和基于内容的推荐算法,同时也提供 ...

  10. 最小生成树——prim

    prim:逐“点”生成最小生成树 与Dijkstra不同的是:加入点到生成树中,不要考虑与源点的距离,而是考虑与生成树的距离 #include <iostream> #include &l ...