【题解】Atcoder ARC#94 F-Normalization
再次膜拜此强题!神级性质之不可能发现系列收藏++;首先,对于长度<=3的情况,我们采取爆搜答案(代码当中是打表)。对于长度>=4的情况,则有如下几条玄妙的性质:
首先我们将 a, b, c 三个字母看做 0, 1, 2。发现(不知道怎么发现的)当我们做出一次变换之后,数列的和在模意义下是不改变的。(*启示:很多关系好像都和取模之后的某些东西有关,例如食物链,此题,and so on)。
那么:当一个序列 T 可以由 S 转化过来时,T必须满足如下几条性质:
1.T的各位字母之和与S的各位字母之和在 %3 的意义下相等。
2.T中必须存在有两个相邻的相同字母(如果不是,不可能是变换后的结果)
当以上两条性质都不满足时,还剩下一种情况,即 S = T。
如何证明是对的?题解如是说:当 n = 4 时,我们可以用打表来验证此性质。当 n > 4 时,我们可以让第一个字母通过变换变成一样的,然后就变成了两个 n - 1 的序列。这样递归下去,当递归到 4 时,即可得证。看起来好像很对的样子,然而怎么证明一定可以把第一个字母变成一样的呢?我并不会……
建立状态 f[i][j][k][p] 表示 dp 到第 i 位,前面的和在模意义下为 j ,最后一位是 k ,是否已经有两个相邻的相同字母的方案数。然后枚举一下,转移就可以惹……
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define maxn 200050
#define mod 998244353
int n, ans, f[maxn][][][], sum;
char a[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} bool Check()
{
for(int i = ; i <= n; i ++)
if(a[i] != a[i - ]) return ;
return ;
} bool Check2()
{
for(int i = ; i <= n; i ++)
if(a[i] == a[i - ]) return ;
return ;
} void Up(int &x, int y) { x = (x + y) % mod; }
void DP(int i, int j, int k, int p)
{
for(int q = ; q <= ; q ++)
Up(f[i + ][q][(q + k) % ][p | (j == q)], f[i][j][k][p]);
} signed main()
{
scanf("%s", a + ); n = strlen(a + );
if(Check()) { puts(""); return ; }
if(n <= )
{
if(n == ) puts("");
else
{
if(a[] != a[] && a[] != a[] && a[] != a[]) puts("");
else if(a[] == a[]) puts("");
else puts("");
}
return ;
}
for(int i = ; i <= n; i ++) sum = (sum + a[i] - 'a') % ;
for(int i = ; i <= ; i ++) f[][i][i][] = ;
for(int i = ; i <= n - ; i ++)
for(int j = ; j <= ; j ++)
for(int k = ; k <= ; k ++)
for(int p = ; p <= ; p ++)
DP(i, j, k, p);
for(int i = ; i <= ; i ++) Up(ans, f[n][i][sum][]);
Up(ans, Check2());
printf("%lld\n", ans);
return ;
}
【题解】Atcoder ARC#94 F-Normalization的更多相关文章
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP
题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...
- [题解] Atcoder ARC 142 E Pairing Wizards 最小割
题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...
- [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学
题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...
- [atcoder contest 010] F - Tree Game
[atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...
- [题解] Atcoder Regular Contest ARC 147 A B C D E 题解
点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...
- 【题解】Atcoder ARC#90 F-Number of Digits
Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...
- 【Atcoder】ARC 080 F - Prime Flip
[算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...
- [题解] Atcoder Regular Contest ARC 151 A B C D E 题解
点我看题 昨天刚打的ARC,题目质量还是不错的. A - Equal Hamming Distances 对于一个位置i,如果\(S_i=T_i\),那么不管\(U\)的这个位置填什么,对到\(S\) ...
随机推荐
- 在线elasticsearch集群批量写入变慢,导致kafka消息消费延迟
写入报错如些: -- ::24.166 [elasticsearch[_client_][listener][T#1]] INFO com.mobanker.framework.es.Elastics ...
- python删除文本中的所有空字符
import re import os input_path = 'G:/test/aa.json' output_path ='G:/test/bb.json' with open(input_pa ...
- C# Builder
如下: class Program { static void Main(string[] args) { ).BuildB(2.1).BuildUp(); Console.Read(); } } p ...
- MySQL☞in语句
in语句: 1)列名 in(数值1,数值2,数值3…):求出满足该列的多个列值 格式: select 列名1,列名2 from 表名 where 列名 in (数值1,数值2,数值3...) 如下图 ...
- TPO-16 C1 Reserve the room for a rehearsal
TPO-16 C1 Reserve the room for a rehearsal 第 1 段 1.Listen to a conversation between a Student and a ...
- python numpy数据相减
numpy数据相减,a和b两者shape要一样,然后是对应的位置相减.要不然,a的shape可以是(1,m),注意m要等于b的列数. import numpy as np a = [ [0, 1, 2 ...
- Pipeline组项目Postmortem
Pipeline组项目Postmortem 1. 设想和目标 1)目标我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的项目是学霸系统PipeLine, ...
- 11.22Daily Scrum
人员 任务分配完成情况 明天任务分配 王皓南 实现网页上视频浏览的功能.研究相关的代码和功能.979 数据库测试 申开亮 实现网页上视频浏览的功能.研究相关的代码和功能.978 实现视频浏览的功能 王 ...
- Android 开发错误集锦
1. eclipse的Device中不显示手机 在eclipse中连接不上手机,出现adb server didn't ACK fail to start daemon 错误. 出现这种原因是因为a ...
- ubuntu apache nginx 启动 关闭
转载自:http://www.comflag.com/2011/05/01/apache-web.htm 电影<社交网络>中,facebook创始人马克.扎克失恋后入侵哈佛大学宿舍楼服务器 ...