【刷题】洛谷 P3804 【模板】后缀自动机
题目描述
给定一个只包含小写字母的字符串 \(S\) ,
请你求出 \(S\) 的所有出现次数不为 \(1\) 的子串的出现次数乘上该子串长度的最大值。
输入输出格式
输入格式:
一行一个仅包含小写字母的字符串 \(S\)
输出格式:
一个整数,为所求答案
输入输出样例
输入样例#1:
abab
输出样例#1:
4
说明
对于 \(10\%\) 的数据, \(|S| \leq 1000\)
对于 \(100\%\) 的数据,\(|S| \leq 10^6\)
题解
SAM模板题
建出SAM后,统计子树和算每个状态最长子串的出现次数,根据贪心,由于题目求的是同一个子串的出现次数和长度的乘积,所以在同一个状态的子串,出现次数相同,那么只要选最长的就行了
于是基数排序搞出拓扑序,统计一下就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000000+10;
int n,las=1,tot=1,len[MAXN<<1],ch[MAXN<<1][30],fa[MAXN<<1],cnt[MAXN],rk[MAXN<<1],size[MAXN<<1];
ll ans;
char s[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void extend(int c)
{
int p=las,np=++tot;
las=np;
len[np]=len[p]+1;
while(p&&!ch[p][c])ch[p][c]=np,p=fa[p];
if(!p)fa[np]=1;
else
{
int q=ch[p][c];
if(len[q]==len[p]+1)fa[np]=q;
else
{
int nq=++tot;
fa[nq]=fa[q];
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
len[nq]=len[p]+1,fa[q]=fa[np]=nq;
while(p&&ch[p][c]==q)ch[p][c]=nq,p=fa[p];
}
}
size[np]=1;
}
int main()
{
scanf("%s",s+1);
n=strlen(s+1);
for(register int i=1;i<=n;++i)extend(s[i]-'a'+1);
for(register int i=1;i<=tot;++i)cnt[len[i]]++;
for(register int i=1;i<=n;++i)cnt[i]+=cnt[i-1];
for(register int i=1;i<=tot;++i)rk[cnt[len[i]]--]=i;
for(register int i=tot;i>=1;--i)
{
size[fa[rk[i]]]+=size[rk[i]];
if(size[rk[i]]>1)chkmax(ans,1ll*size[rk[i]]*len[rk[i]]);
}
write(ans,'\n');
return 0;
}
【刷题】洛谷 P3804 【模板】后缀自动机的更多相关文章
- 洛谷 P3804 [模板] 后缀自动机
题目:https://www.luogu.org/problemnew/show/P3804 模仿了一篇题解,感觉很好写啊. 代码如下: #include<cstdio> #include ...
- 【后缀自动机】洛谷P3804模板题
题目描述 给定一个只包含小写字母的字符串SSS, 请你求出 SSS 的所有出现次数不为 111 的子串的出现次数乘上该子串长度的最大值. 输入输出格式 输入格式: 一行一个仅包含小写字母的字符串SSS ...
- 洛谷 P1368 工艺 后缀自动机 求最小表示
后缀自动机沙茶题 将字符串复制一次,建立后缀自动机. 在后缀自动机上贪心走 $n$ 次即可. Code: #include <cstdio> #include <algorithm& ...
- 洛谷.3809.[模板]后缀排序(后缀数组 倍增) & 学习笔记
题目链接 //输出ht见UOJ.35 #include<cstdio> #include<cstring> #include<algorithm> const in ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷 P3804 【模板】后缀自动机 统计单词出现次数
后缀自动机模板题. 关键时求解每个节点的 $right$ 大小. 由于后缀自动机在构建时会保证点和点的 $right$ 只可能没有交集,或者一个是另一个的真子集,我们可以不重复的对 $right$ 进 ...
- 洛谷P3804 【模板】后缀自动机
题目描述 给定一个只包含小写字母的字符串 SS , 请你求出 SS 的所有出现次数不为 11 的子串的出现次数乘上该子串长度的最大值. 输入输出格式 输入格式: 一行一个仅包含小写字母的字符串 SS ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷 P3804 后缀自动机
题目描述 给定一个只包含小写字母的字符串SS , 请你求出 SS 的所有出现次数不为 11 的子串的出现次数乘上该子串长度的最大值. 输入输出格式 输入格式: 一行一个仅包含小写字母的字符串SS 输出 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
随机推荐
- 一些窍门 drawable
java.lang.Object android.graphics.drawable.DrawableKnown Direct Subclasses BitmapDrawable, C ...
- 【廖雪峰老师python教程】——IO编程
同步IO 异步IO 最常见的IO——读写文件 读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一 ...
- 「国庆训练」Kingdom of Obsession(HDU-5943)
题意 给定\(s,n\),把\(s+1,s+2,...,s+n\)这\(n\)个数填到\(1,2,...,n\)里,要求\(x\)只能填到\(x\)的因子的位置(即题目中\(x\%y=0\)那么x才能 ...
- css多行文本溢出显示省略号(…)
text-overflow:ellipsis属性可以实现单行文本的溢出显示省略号(…).但部分浏览器还需要加宽度width属性. css代码: overflow: hidden; text-overf ...
- 从零开始的Python学习Episode 6——字符串操作
字符串操作 一.输出重复字符串 print('smile'*6) #输出6个smile 二.通过引索输出部分字符串 print('smile'[1:]) print('smile'[1:3]) #输出 ...
- LeetCode 386——字典序排数
1. 题目 2. 解答 2.1 方法一 假设返回 118 以内数的字典顺序,则为 1,10,100,101,102,...,109,11,110,111,112,...,118,12,13,....根 ...
- 线性代数之——微分方程和 exp(At)
本节的核心是将常系数微分方程转化为线性代数问题. \[\frac{du}{dt}=\lambda u \quad 的解为 \quad u(t) = Ce^{\lambda t}\] 代入 \(t=0\ ...
- ajax获取动态列表数据后的分页问题
ajax获取动态列表数据后的分页问题 这是我在写前台网站时遇到的一个分页问题,由于数据是通过ajax的方式来请求得到的,如果引入相应的js文件来做分页,假如只是静态的填放数据到列表各项内容中(列表条数 ...
- Hadoop,MapReduce操作Mysql
前以前帖子介绍,怎样读取文本数据源和多个数据源的合并:http://www.cnblogs.com/liqizhou/archive/2012/05/15/2501835.html 这一个博客介绍一下 ...
- BluetoothServerSocket详解
一. BluetoorhServerSocket简介 1. 继承关系 public final class BluetoothServerSocket extends Object implement ...