https://www.lydsy.com/JudgeOnline/problem.php?id=5329

https://www.luogu.org/problemnew/show/P4606

省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏。
这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着道路走到任意其他城市。现在小C已经占领了其中至少两个城市,小Q可以摧毁一个小C没占领的城市,同时摧毁所有连接这个城市的道路。只要在摧毁这个城市之后能够找到某两个小C占领的城市u和v,使得从u出发沿着道路无论如何都不能走到v,那么小Q就能赢下这一局游戏。
小Q和小C一共进行了q局游戏,每一局游戏会给出小C占领的城市集合S,你需要帮小Q数出有多少个城市在他摧毁之后能够让他赢下这一局游戏。

圆方树很好的板子题,以及最开始我题看错了以为是最少多少步才能赢emm…

看到炸点想到tarjan点双缩点,然后套上圆方树。

然后对于询问的点集发现很小,于是套上虚树。

然后任意两个关键点之间的赢法取决于这两个关键点之间有多少圆点,话句话讲,答案就是虚树所有路径在原树上的圆点个数和。

码码码就AC了。

PS:注意虚树的根到原树的根这段路程的圆点不要统计!WA在这里。

(以及强烈吐槽对于tarjan压栈压的是点的同学你们这样做是不对的!)

#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const int N=2e5+;
const int B=;
const int M=N*;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int u[M],v[M],nxt[M];
int cnt,head[N];
void init(){
cnt=;
memset(head,,sizeof(head));
}
void add(int U,int V){
u[++cnt]=U;v[cnt]=V;nxt[cnt]=head[U];head[U]=cnt;
}
}e,g;
int n,m;
int dfn[N],low[N],to[N],t,l;
stack<int>q;
void tarjan(int u,int f){
dfn[u]=low[u]=++t;
for(int i=g.head[u];i;i=g.nxt[i]){
int v=g.v[i];
if(!dfn[v]){
q.push(i);
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
int num;l++;
do{
num=q.top();q.pop();
int uu=g.u[num],vv=g.v[num];
if(to[uu]!=l){
to[uu]=l;
e.add(uu,l+n);e.add(l+n,uu);
}
if(to[vv]!=l){
to[vv]=l;
e.add(vv,l+n);e.add(l+n,vv);
}
}while(num!=i);
}
}else if(low[u]>dfn[v]&&f!=v){
q.push(i);
low[u]=dfn[v];
}
}
} int anc[N][B+],dep[N],pos[N],len[N],tot;
void dfs(int u,int f){
pos[u]=++tot;
dep[u]=dep[f]+;
len[u]=len[f]+(u<=n);
anc[u][]=f;
for(int i=;i<=B;i++)
anc[u][i]=anc[anc[u][i-]][i-];
for(int i=e.head[u];i;i=e.nxt[i]){
int v=e.v[i];
if(v!=anc[u][])dfs(v,u);
}
}
inline int LCA(int i,int j){
if(dep[i]<dep[j])swap(i,j);
for(int k=B;k>=;--k)
if(dep[anc[i][k]]>=dep[j])i=anc[i][k];
if(i==j)return i;
for(int k=B;k>=;--k)
if(anc[i][k]!=anc[j][k])
i=anc[i][k],j=anc[j][k];
return anc[i][];
} int aux[N],stk[N],fa_aux[N],top,num;
bool cmp(int a,int b){return pos[a]<pos[b];}
int build(int t){
sort(aux+,aux+t+,cmp);
num=t;stk[top=]=;
for(int i=;i<=t;i++){
int u=aux[i];
if(!top)fa_aux[u]=,stk[++top]=u;
else{
int lca=LCA(u,stk[top]);
while(dep[stk[top]]>dep[lca]){
if(dep[stk[top-]]<=dep[lca])
fa_aux[stk[top]]=lca;
top--;
}
if(stk[top]!=lca){
fa_aux[lca]=stk[top];
stk[++top]=lca;
aux[++num]=lca;
}
fa_aux[u]=lca;
stk[++top]=u;
}
}
sort(aux+,aux+num+,cmp);
}
int solve(){
int ans=;
for(int i=num;i>;i--){
int u=aux[i],v=fa_aux[u];
ans+=len[u]-len[v];
}
ans+=aux[]<=n;
return ans;
}
inline void init(){
t=l=tot=;
e.init();g.init();
memset(to,,sizeof(to));
memset(dfn,,sizeof(dfn));
}
int main(){
int T=read();
while(T--){
init();
n=read(),m=read();
for(int i=;i<=m;i++){
int u=read(),v=read();
g.add(u,v);g.add(v,u);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i,);
dfs(,);
int q=read();
while(q--){
int t=read();
for(int i=;i<=t;i++)aux[i]=read();
build(t);
printf("%d\n",solve()-t);
}
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5329: [SDOI2018]战略游戏——题解的更多相关文章

  1. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  2. [BZOJ5329][SDOI2018]战略游戏

    bzoj luogu Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任 ...

  3. [bzoj5329] P4606 [SDOI2018]战略游戏

    P4606 [SDOI2018]战略游戏:广义圆方树 其实会了圆方树就不难,达不到黑,最多算个紫 那个转换到圆方树上以后的处理方法,画画图就能看出来,所以做图论题一定要多画图,并把图画清楚点啊!! 但 ...

  4. [SDOI2018]战略游戏 圆方树,树链剖分

    [SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...

  5. bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)

    bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...

  6. bzoj 5329: [Sdoi2018]战略游戏

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  7. luogu P4606 [SDOI2018]战略游戏

    LINK:战略游戏 一道很有价值的题目.这道题 一张无向联通图 每次询问给出K个关键点 问摧毁图中哪个点可以使得这K个关键的两两之间有一对不能联通 去掉的这个点不能是关键点 求方案数. 可以发现 当K ...

  8. 【题解】SDOI2018战略游戏

    被CNST的大小卡了好久.一定要开到18呀…… 首先,遇到这种带各种各样环的图先考虑是不是可以建立圆方树,在圆方树上求出答案.然后转化为圆方树之后,我们就将图转化到了树上.答案非常的明显:只要一个圆点 ...

  9. 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】

    题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...

随机推荐

  1. Omad群组部署、依赖部署一键解决

    本文来自网易云社区 作者:李培斌 前言 基于omad部署平台实现一键部署的实践已有很多成功的经验,杭研QA的技术先锋们也在ks圈里有很多不同的文章去阐述关于这类需求的实现和思路,当然包括我们金融事业部 ...

  2. linux常用的命令之一chmod

    用权限 : 所有使用者 使用方式 : chmod [-cfvR] [--help] [--version] mode file... u 表示该档案的拥有者,g 表示与该档案的拥有者属于同一个群体(g ...

  3. 「日常训练」Battle Over Cities - Hard Version(PAT-TOP-1001)

    题意与分析 题意真的很简单,实在不想讲了,简单说下做法吧. 枚举删除每个点,然后求最小生成树,如果这个路已经存在那么边权就是0,否则按照原来的处理,之后求花费,然后判整个图是否联通(并查集有几个roo ...

  4. MySQL☞having子句

    having子句:是跟group  by结合使用,对分组以后的数据再次进行过滤,经常跟聚合函数结合使用 格式: select  列名/聚合函数 from  表名 where  条件 group  by ...

  5. Linux命令大全(非常全,史上最全)

    最近学习Linux,最大的体验就是它的很多东西都需要由命令来进行控制,下面是我总结的一些命令,供大家参考: 系统信息   arch 显示机器的处理器架构 uname -m 显示机器的处理器架构 una ...

  6. TPO-11 C2 Work for the biology committee

    committee 委员会 representative 代表 department secretary 系里的秘书 applicant 申请人 TPO-11 C2 Work for the biol ...

  7. python基本数据类型——集合

    集合 无序可变序列,集合中元素不允许重复,即每个元素都是唯一的 集合中的元素按照升序排列 # 创建集合 >>aset = set([0,2,4,5,7,2,3,5,9,0]) >&g ...

  8. centos端口管理

    centos 6.5 ###############配置filter表防火墙############### #清除预设表filter中的所有规则链的规则iptables -F #清除预设表filter ...

  9. 关于Python3中函数:

    # 关于Python3中函数: - 定义 定义函数使用关键字def,后接函数名和放在圆括号()中的可选参数列表,函数内容以冒号起始并且缩进.一般格式如下:``` def 函数名(参数列表): &quo ...

  10. 孵化器使用Office365的场景及收益