CF#67 75d Big Maximum Sum
题解:
观察到拼接后的数据范围过大,无法O(n)解决,但是大区间是由很多小区间组成,而小区间是固定的,不会变化,所以可以考虑预处理出每个小区间的信息,然后根据给定序列按顺序一步一步合并区间信息。
跟线段树维护区间最大子段和类似,要合并2个区间我们只需要知道如下信息:
前缀最大子段和,后缀最大子段和,当前区间最大子段和。
那么转移方式如下:
1,对于区间最大子段和而言,要么是继承2个区间中的某个最大子段和,要么是用上一个区间的后缀最大子段和+后一个区间的前缀最大子段和凑成一个子段和作为新的最大子段和,所以3者取max即可。
2,对于前缀最大值而言,,,其实我们在转移的时候并不需要用到上一个区间的前缀最大值,因此无需再次维护。
3,对于后缀最大值而言,要么是继承后一个区间的后缀最大子段和,要么是上一个区间的后缀最大值+后一个区间的整个区间凑成的新后缀最大值,2者取max即可。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 50
#define ac 5000
#define LL long long int n, m, len;
LL l[AC], r[AC], mx[AC], sum[AC], ans, rr;
int s[ac]; inline int read()
{
int x = ;char c = getchar();bool z = false;
while(c > '' || c < '')
{
if(c == '-') z = true;
c = getchar();
}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
if(!z) return x;
else return -x;
} inline void upmax(LL &a, LL b)
{
if(b > a) a = b;
} void pre()
{
n = read(), m = read();
for(R i = ; i <= n; i ++)
{
len = read();
for(R j = ; j <= len; j ++) s[j] = read(), sum[i] += s[j];
LL tmp = ;
for(R j = ; j <= len; j ++) tmp += s[j], upmax(l[i], tmp);
tmp = ;
for(R j = len; j; j --) tmp += s[j], upmax(r[i], tmp);
tmp = ;
for(R j = ; j <= len; j ++)
{
tmp += s[j];
upmax(mx[i], tmp);
if(tmp < ) tmp = ;
}
}
} void work()
{
int x;
x = read();
rr = r[x], ans = mx[x];
for(R i = ; i <= m; i ++)
{
x = read();//读入右区间
upmax(ans, mx[x]);
upmax(ans, rr + l[x]);
rr = rr + sum[x];
upmax(rr, r[x]);
}
cout << ans << endl;
} int main()
{
//freopen("in.in", "r", stdin);
pre();
work();
//fclose(stdin);
return ;
}
CF#67 75d Big Maximum Sum的更多相关文章
- cf#513 B. Maximum Sum of Digits
B. Maximum Sum of Digits time limit per test 2 seconds memory limit per test 512 megabytes input sta ...
- CF 276C Little Girl and Maximum Sum【贪心+差分】
C. Little Girl and Maximum Sum time limit per test2 seconds memory limit per test256 megabytes input ...
- POJ2479 Maximum sum[DP|最大子段和]
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 39599 Accepted: 12370 Des ...
- ural 1146. Maximum Sum
1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...
- UVa 108 - Maximum Sum(最大连续子序列)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 最大子矩阵和 URAL 1146 Maximum Sum
题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...
- URAL 1146 Maximum Sum(最大子矩阵的和 DP)
Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...
- ural 1146. Maximum Sum(动态规划)
1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...
- UVa 10827 - Maximum sum on a torus
题目大意:UVa 108 - Maximum Sum的加强版,求最大子矩阵和,不过矩阵是可以循环的,矩阵到结尾时可以循环到开头.开始听纠结的,想着难道要分情况讨论吗?!就去网上搜,看到可以通过补全进行 ...
随机推荐
- mysql 优化笔记
数据表总共81万条数 SQL explain ); 执行时间超级长,没有等到执行完成就终止了太慢了 explain一下 发现表bb 的select_type 为DEPENDENT SUBQUERY ...
- 面试遇到的订单表sql的解决方案
对于以下需求:用户表:users (user_id int)订单表:order_tb(user_id int, or_time date, or_money double)求以下用户:一月下过单, ...
- WPF Style Setter use a TemplateBinding?
<Style TargetType="{x:Type local:ImageButton}"> <Setter Property="Horizontal ...
- hdu1217Arbitrage(floyd+map)
Arbitrage Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- Android Test和Logcat
一 测试相关概念 是否有源码 黑盒测试: 测试工具 白盒测试: 对所有的源码特别熟悉 对特定的代码进行测试 都是编程 时间 单元测试(程序员) 模块测试 集成测试 系统测试 回归测试(改bug) 压力 ...
- Python 集合内置函数大全(非常全!)
Python集合内置函数操作大全 集合(s).方法名 等价符号 方法说明 s.issubset(t) s <= t 子集测试(允许不严格意义上的子集):s 中所有的元素都是 t 的成员 s ...
- lintcode50 数组剔除元素后的乘积
数组剔除元素后的乘积 给定一个整数数组A. 定义B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], 计算B的时候请不要使用除法. 您在真实的面试中是 ...
- NMAP-高级用法
1.报文分段 2.偏移 –mtu后面的数字是8的倍数 3.源端口欺骗 4.指定报文长度 5.ttl 6.mac地址伪造 0代表随机伪造 7.正常输出 8.输出为xml 9.输出为grep 10.输出所 ...
- Html5 input placeholder 属性字体颜色修改。
这篇文章主要介绍了有关HTML5 input placeholder 颜色修改方面的知识,需要的朋友可以参考下 Chrome支持input=[type=text]占位文本属性,但下列CSS样式 ...
- 20172330 2017-2018-1 《Java程序设计》第八周学习总结
学号 2017-2018-1 <程序设计与数据结构>第八周学习总结 教材学习内容总结 这一章主要是对多态性的学习: 由继承实现多态性 多态性引用能够随时间变化指向不同类型的对象. 对于多态 ...