CF#67 75d Big Maximum Sum
题解:
观察到拼接后的数据范围过大,无法O(n)解决,但是大区间是由很多小区间组成,而小区间是固定的,不会变化,所以可以考虑预处理出每个小区间的信息,然后根据给定序列按顺序一步一步合并区间信息。
跟线段树维护区间最大子段和类似,要合并2个区间我们只需要知道如下信息:
前缀最大子段和,后缀最大子段和,当前区间最大子段和。
那么转移方式如下:
1,对于区间最大子段和而言,要么是继承2个区间中的某个最大子段和,要么是用上一个区间的后缀最大子段和+后一个区间的前缀最大子段和凑成一个子段和作为新的最大子段和,所以3者取max即可。
2,对于前缀最大值而言,,,其实我们在转移的时候并不需要用到上一个区间的前缀最大值,因此无需再次维护。
3,对于后缀最大值而言,要么是继承后一个区间的后缀最大子段和,要么是上一个区间的后缀最大值+后一个区间的整个区间凑成的新后缀最大值,2者取max即可。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 50
#define ac 5000
#define LL long long int n, m, len;
LL l[AC], r[AC], mx[AC], sum[AC], ans, rr;
int s[ac]; inline int read()
{
int x = ;char c = getchar();bool z = false;
while(c > '' || c < '')
{
if(c == '-') z = true;
c = getchar();
}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
if(!z) return x;
else return -x;
} inline void upmax(LL &a, LL b)
{
if(b > a) a = b;
} void pre()
{
n = read(), m = read();
for(R i = ; i <= n; i ++)
{
len = read();
for(R j = ; j <= len; j ++) s[j] = read(), sum[i] += s[j];
LL tmp = ;
for(R j = ; j <= len; j ++) tmp += s[j], upmax(l[i], tmp);
tmp = ;
for(R j = len; j; j --) tmp += s[j], upmax(r[i], tmp);
tmp = ;
for(R j = ; j <= len; j ++)
{
tmp += s[j];
upmax(mx[i], tmp);
if(tmp < ) tmp = ;
}
}
} void work()
{
int x;
x = read();
rr = r[x], ans = mx[x];
for(R i = ; i <= m; i ++)
{
x = read();//读入右区间
upmax(ans, mx[x]);
upmax(ans, rr + l[x]);
rr = rr + sum[x];
upmax(rr, r[x]);
}
cout << ans << endl;
} int main()
{
//freopen("in.in", "r", stdin);
pre();
work();
//fclose(stdin);
return ;
}
CF#67 75d Big Maximum Sum的更多相关文章
- cf#513 B. Maximum Sum of Digits
B. Maximum Sum of Digits time limit per test 2 seconds memory limit per test 512 megabytes input sta ...
- CF 276C Little Girl and Maximum Sum【贪心+差分】
C. Little Girl and Maximum Sum time limit per test2 seconds memory limit per test256 megabytes input ...
- POJ2479 Maximum sum[DP|最大子段和]
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 39599 Accepted: 12370 Des ...
- ural 1146. Maximum Sum
1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...
- UVa 108 - Maximum Sum(最大连续子序列)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 最大子矩阵和 URAL 1146 Maximum Sum
题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...
- URAL 1146 Maximum Sum(最大子矩阵的和 DP)
Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...
- ural 1146. Maximum Sum(动态规划)
1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...
- UVa 10827 - Maximum sum on a torus
题目大意:UVa 108 - Maximum Sum的加强版,求最大子矩阵和,不过矩阵是可以循环的,矩阵到结尾时可以循环到开头.开始听纠结的,想着难道要分情况讨论吗?!就去网上搜,看到可以通过补全进行 ...
随机推荐
- IAR调试cc2541串口遇到的Warning : Possible IDATA stack overflow detected
1. 遇到的错误如下,似乎是栈空间不够使用 2. 修改界面如下,增加IDATA的大小,不过最大似乎是0XFF.
- Win10 远程服务器版
朋友的电脑刚装了1803版的Win10,然后他用KMS_VL_ALL6.9激活了一下,竟然变成了一个奇怪的版本:“远程服务器版”!第一次见这玩意,还真稀罕.帮他研究了一下,发现KMS_VL_ALL在激 ...
- centos7下安装mysql8.0.12及设置权限
一.mysql版本介绍 mysql的官网为:https://www.mysql.com/ 在官网上可以看到多个版本,主要版本如下, 1.MySQL Community Server 社区版本,开源免费 ...
- coolshell里的一些c++文章
c++数组不支持多态 https://coolshell.cn/articles/9543.htmlwhy gcc in c++ https://airs.com/ian/cxx-slides.pdf ...
- mysql新手进阶01
生活不止眼前的苟且,还有诗和远方. 请根据给出的数据库表结构来回答相应问题: DEPT (DEPTNO INT, DNAME VARCHAR(14),LOC VARCHAR(13)); EMP (EM ...
- Unity编辑器 - DragAndDrop拖拽控件
Unity编辑器 - DragAndDrop拖拽控件 Unity编辑器的拖拽(DragAndDrop)在网上能找到的资料少,自己稍微研究了一下,写了个相对完整的案例,效果如下 代码: object d ...
- 哈希表 -数据结构(C语言实现)
读数据结构与算法分析 哈希表 一种用于以常数平均时间执行插入.删除和查找操作的数据结构. 但是是无序的 一般想法 通常为一个包含关键字的具有固定大小的数组 每个关键字通过散列函数映射到数组中 冲突:两 ...
- Scala学习笔记之Actor多线程与线程通信的简单例子
题目:通过子线程读取每个文件,并统计单词数,将单词数返回给主线程相加得出总单词数 package review import scala.actors.{Actor, Future} import s ...
- Bootstrap框架(组件)
按钮组 通过按钮组容器把一组按钮放在同一行里.通过与按钮插件联合使用,可以设置为单选框或多选框的样式和行为. 按钮组中的工具提示和弹出框需要特别的设置 当为 .btn-group 中的元素应用工具提示 ...
- leetcode个人题解——two sum
这是leetcode第一题,通过较为简单. 第一题用来测试的,用的c,直接暴力法过, /** * Note: The returned array must be malloced, assume c ...