考虑DP。

如果把转移看出当前位填什么数的话,这样是有后效性的。

如果考虑当前的序列是将1至n依次插入序列中的话。

考虑将i插入1到i-1的序列中,如果插入到<号中或者首部,那么最后就会多出一个大于号。

如果插入到>号中或者尾部,那么最后就会多出一个小于号。

所以定义状态dp[i][j]表示1到i组成的序列中,小于号的数目为j的方法数。转移方程即为所求。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int dp[N][N]; int dfs(int x, int y){
if (~dp[x][y]) return dp[x][y];
if (y==||y==x-) return dp[x][y]=;
if (y>=x) return ;
int ans=(dfs(x-,y)*(y+)%+dfs(x-,y-)*(x-y)%)%;
return dp[x][y]=ans;
}
int main ()
{
int n, k;
mem(dp,-);
scanf("%d%d",&n,&k);
printf("%d\n",dfs(n,k));
return ;
}

HUAS 1476 不等数列(DP)的更多相关文章

  1. Codevs 4357 不等数列

    不等数列 [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2012取模. [输入格式 ...

  2. 模拟赛 Problem 2 不等数列(num.cpp/c/pas)

    Problem 2 不等数列(num.cpp/c/pas) [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有 ...

  3. 【P2401】不等数列(DP)

    这个题乍一看就应该是DP,再看一眼数据范围,1000..那就应该是了.然后就向DP的方向想,经过对小数据的计算可以得出,如果我们用f[i][j]来表示前i个数有j个是填了"<" ...

  4. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  5. [模拟赛] T2 不等数列

    Description 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个&qu ...

  6. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  7. [编程题] 小易喜欢的数列 dp

    https://www.nowcoder.com/question/next?pid=6291726&qid=112729&tid=12736753 [编程题] 小易喜欢的数列 时间限 ...

  8. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  9. 不等式数列 DP

    度度熊最近对全排列特别感兴趣,对于1到n的一个排列,度度熊发现可以在中间根据大小关系插入合适的大于和小于符号(即 '>' 和 '<' )使其成为一个合法的不等式数列.但是现在度度熊手中只有 ...

随机推荐

  1. 北京Uber优步司机奖励政策(3月27日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. 打造移动应用与游戏安全防线,腾讯WeTest安全服务全线升级

    当移动互联网渗透到千家万户,与工业控制.智慧交通.实时社交.休闲娱乐紧密结合时,应用安全就变得尤为重要. 尤其在网络强相关的APP流行年代,当APP应用客户端上传与获取信息,大多通过接口在服务器双向通 ...

  3. 2019年猪年海报PSD模板-第三部分

    14套精美猪年海报,免费猪年海报,下载地址:百度网盘,https://pan.baidu.com/s/15m6sWTdDzuBfdmHYxJVvbA              

  4. Linux命令应用大词典-第37章 Linux系统故障排错

    37.1 mkbootdisk:创建用于运行系统的独立启动软盘 37.2 chroot:切换根目录环境 37.3 badblocks:搜索设备的坏块 37.4 mkinitrd:创建要载入ramdis ...

  5. Java 递归 反射 正则表达式

    一 递归 1. 就是函数自身调用自身 (就是在栈内存中不断的加载同一个函数) 2. 什么时候用递归呢? 当一个功能被重复使用 而每一次使用该功能时的参数不确定 都由上次的功能元素结果来确定 简单说: ...

  6. Python字典操作大全

    //2018.11.6 Python字典操作 1.对于python编程里面字典的定义有以下几种方法: >>> a = dict(one=1, two=2, three=3) > ...

  7. <cassert>

    文件名:  <cassert> (assert.h) 这是一个C语言的诊断库,assert.h文件中定义了一个可作为标准调试工具的宏函数: assert ; 下面介绍这个宏函数:asser ...

  8. 简单的图片滑动效果插件 jQuery.iocnSlider.js

    近几日在制作一个客户引导页面,其中有一个图片展示而且带滑动的效果.好久没练手了,索性自己写一个插件吧. 依据设计原型,需要满足两套分辨率下图片不同的尺寸,所以在css中使用了media query的相 ...

  9. [Clr via C#读书笔记]Cp8方法

    Cp8方法 构造器 作用就是初始化所有成员字段:.ctor:派生类和基类都有自己的构造函数.默认有一个无参数的构造函数,值字段初始化为0,引用字段初始化为null:可以有多个构造器: 值类型的初始化其 ...

  10. 150命令之线上查询及帮助命令 man hellp

    150命令之线上查询及帮助命令 man 查询命令的帮助 man + 命令 NAME        ls - list directory contents 命令+命令简单说明   SYNOPSIS   ...