Hive窗口函数之LAG、LEAD、FIRST_VALUE、LAST_VALUE的用法
一、创建表:
create table windows_ss
(
polno string,
eff_date string,
userno string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
stored as textfile;
数据准备:
P066666666666,2016-04-02 09:00:02,user01
P066666666666,2016-04-02 09:00:00,user02
P066666666666,2016-04-02 09:03:04,user11
P066666666666,2016-04-02 09:50:05,user03
P066666666666,2016-04-02 10:00:00,user51
P066666666666,2016-04-02 09:10:00,user09
P066666666666,2016-04-02 09:50:01,user32
P088888888888,2016-04-02 09:00:02,user41
P088888888888,2016-04-02 09:00:00,user55
P088888888888,2016-04-02 09:03:04,user23
P088888888888,2016-04-02 09:50:05,user80
P088888888888,2016-04-02 10:00:00,user08
P088888888888,2016-04-02 09:10:00,user22
P088888888888,2016-04-02 09:50:01,user31
将数据导入Hive表中:
LOAD DATA LOCAL INPATH '/home/hadoop/testhivedata/windows_ss.txt' OVERWRITE INTO TABLE windows_ss;
LAG
LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT
polno,
eff_date,
userno,
ROW_NUMBER() OVER(PARTITION BY polno ORDER BY eff_date) AS rn,
LAG(eff_date,1,'1970-01-01 00:00:00') OVER(PARTITION BY polno ORDER BY eff_date) AS last_1_time,
LAG(eff_date,2) OVER(PARTITION BY polno ORDER BY eff_date) AS last_2_time
FROM windows_ss;
结果:
polno eff_date userno rn last_1_time last_2_time
P066666666666 2016-04-02 09:00:00 user02 1 1970-01-01 00:00:00 NULL
P066666666666 2016-04-02 09:00:02 user01 2 2016-04-02 09:00:00 NULL
P066666666666 2016-04-02 09:03:04 user11 3 2016-04-02 09:00:02 2016-04-02 09:00:00
P066666666666 2016-04-02 09:10:00 user09 4 2016-04-02 09:03:04 2016-04-02 09:00:02
P066666666666 2016-04-02 09:50:01 user32 5 2016-04-02 09:10:00 2016-04-02 09:03:04
P066666666666 2016-04-02 09:50:05 user03 6 2016-04-02 09:50:01 2016-04-02 09:10:00
P066666666666 2016-04-02 10:00:00 user51 7 2016-04-02 09:50:05 2016-04-02 09:50:01
P088888888888 2016-04-02 09:00:00 user55 1 1970-01-01 00:00:00 NULL
P088888888888 2016-04-02 09:00:02 user41 2 2016-04-02 09:00:00 NULL
P088888888888 2016-04-02 09:03:04 user23 3 2016-04-02 09:00:02 2016-04-02 09:00:00
P088888888888 2016-04-02 09:10:00 user22 4 2016-04-02 09:03:04 2016-04-02 09:00:02
P088888888888 2016-04-02 09:50:01 user31 5 2016-04-02 09:10:00 2016-04-02 09:03:04
P088888888888 2016-04-02 09:50:05 user80 6 2016-04-02 09:50:01 2016-04-02 09:10:00
P088888888888 2016-04-02 10:00:00 user08 7 2016-04-02 09:50:05 2016-04-02 09:50:01
分析:
last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'
P066666666666第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
P066666666666第三行,往上1行值为第二行值,2016-04-02 09:00:02
P066666666666第六行,往上1行值为第五行值,2016-04-02 09:50:01
last_2_time: 指定了往上第2行的值,为指定默认值
P088888888888第一行,往上2行为NULL
P088888888888第二行,往上2行为NULL
P088888888888第四行,往上2行为第二行值,2016-04-02 09:00:02
P088888888888第七行,往上2行为第五行值,2016-04-02 09:50:01
LEAD
与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT
polno,
eff_date,
userno,
ROW_NUMBER() OVER(PARTITION BY polno ORDER BY eff_date) AS rn,
LEAD(eff_date,1,'1970-01-01 00:00:00') OVER(PARTITION BY polno ORDER BY eff_date) AS next_1_time,
LEAD(eff_date,2) OVER(PARTITION BY polno ORDER BY eff_date) AS next_2_time
FROM windows_ss;
结果:
polno eff_date userno rn next_1_time next_2_time
P066666666666 2016-04-02 09:00:00 user02 1 2016-04-02 09:00:02 2016-04-02 09:03:04
P066666666666 2016-04-02 09:00:02 user01 2 2016-04-02 09:03:04 2016-04-02 09:10:00
P066666666666 2016-04-02 09:03:04 user11 3 2016-04-02 09:10:00 2016-04-02 09:50:01
P066666666666 2016-04-02 09:10:00 user09 4 2016-04-02 09:50:01 2016-04-02 09:50:05
P066666666666 2016-04-02 09:50:01 user32 5 2016-04-02 09:50:05 2016-04-02 10:00:00
P066666666666 2016-04-02 09:50:05 user03 6 2016-04-02 10:00:00 NULL
P066666666666 2016-04-02 10:00:00 user51 7 1970-01-01 00:00:00 NULL
P088888888888 2016-04-02 09:00:00 user55 1 2016-04-02 09:00:02 2016-04-02 09:03:04
P088888888888 2016-04-02 09:00:02 user41 2 2016-04-02 09:03:04 2016-04-02 09:10:00
P088888888888 2016-04-02 09:03:04 user23 3 2016-04-02 09:10:00 2016-04-02 09:50:01
P088888888888 2016-04-02 09:10:00 user22 4 2016-04-02 09:50:01 2016-04-02 09:50:05
P088888888888 2016-04-02 09:50:01 user31 5 2016-04-02 09:50:05 2016-04-02 10:00:00
P088888888888 2016-04-02 09:50:05 user80 6 2016-04-02 10:00:00 NULL
P088888888888 2016-04-02 10:00:00 user08 7 1970-01-01 00:00:00 NULL
分析:
--逻辑与LAG一样,只不过LAG是往上,LEAD是往下
FIRST_VALUE
取分组内排序后,截止到当前行,第一个值
SELECT
polno,
eff_date,
userno,
ROW_NUMBER() OVER(PARTITION BY polno ORDER BY eff_date) AS rn,
FIRST_VALUE(userno) OVER(PARTITION BY polno ORDER BY eff_date) AS first1
FROM windows_ss;
polno eff_date userno rn first1
P066666666666 2016-04-02 09:00:00 user02 1 user02
P066666666666 2016-04-02 09:00:02 user01 2 user02
P066666666666 2016-04-02 09:03:04 user11 3 user02
P066666666666 2016-04-02 09:10:00 user09 4 user02
P066666666666 2016-04-02 09:50:01 user32 5 user02
P066666666666 2016-04-02 09:50:05 user03 6 user02
P066666666666 2016-04-02 10:00:00 user51 7 user02
P088888888888 2016-04-02 09:00:00 user55 1 user55
P088888888888 2016-04-02 09:00:02 user41 2 user55
P088888888888 2016-04-02 09:03:04 user23 3 user55
P088888888888 2016-04-02 09:10:00 user22 4 user55
P088888888888 2016-04-02 09:50:01 user31 5 user55
P088888888888 2016-04-02 09:50:05 user80 6 user55
P088888888888 2016-04-02 10:00:00 user08 7 user55
LAST_VALUE
取分组内排序后,截止到当前行,最后一个值
SELECT
polno,
eff_date,
userno,
ROW_NUMBER() OVER(PARTITION BY polno ORDER BY eff_date) AS rn,
LAST_VALUE(userno) OVER(PARTITION BY polno ORDER BY eff_date) AS last1
FROM windows_ss;
结果:
polno eff_date userno rn last1
P066666666666 2016-04-02 09:00:00 user02 1 user02
P066666666666 2016-04-02 09:00:02 user01 2 user01
P066666666666 2016-04-02 09:03:04 user11 3 user11
P066666666666 2016-04-02 09:10:00 user09 4 user09
P066666666666 2016-04-02 09:50:01 user32 5 user32
P066666666666 2016-04-02 09:50:05 user03 6 user03
P066666666666 2016-04-02 10:00:00 user51 7 user51
P088888888888 2016-04-02 09:00:00 user55 1 user55
P088888888888 2016-04-02 09:00:02 user41 2 user41
P088888888888 2016-04-02 09:03:04 user23 3 user23
P088888888888 2016-04-02 09:10:00 user22 4 user22
P088888888888 2016-04-02 09:50:01 user31 5 user31
P088888888888 2016-04-02 09:50:05 user80 6 user80
P088888888888 2016-04-02 10:00:00 user08 7 user08
如果不指定ORDER BY,则默认按照记录在文件中的偏移量进行排序,会出现错误的结果
FIRST_VALUE没有排序:
SELECT
polno,
eff_date,
userno,
FIRST_VALUE(userno) OVER(PARTITION BY polno) AS first2
FROM windows_ss;
polno eff_date userno first2
P066666666666 2016-04-02 09:00:02 user01 user01
P066666666666 2016-04-02 09:00:00 user02 user01
P066666666666 2016-04-02 09:03:04 user11 user01
P066666666666 2016-04-02 09:50:05 user03 user01
P066666666666 2016-04-02 10:00:00 user51 user01
P066666666666 2016-04-02 09:10:00 user09 user01
P066666666666 2016-04-02 09:50:01 user32 user01
P088888888888 2016-04-02 09:00:02 user41 user41
P088888888888 2016-04-02 09:00:00 user55 user41
P088888888888 2016-04-02 09:03:04 user23 user41
P088888888888 2016-04-02 09:50:05 user80 user41
P088888888888 2016-04-02 10:00:00 user08 user41
P088888888888 2016-04-02 09:10:00 user22 user41
P088888888888 2016-04-02 09:50:01 user31 user41
LAST_VALUE没有排序:
SELECT
polno,
eff_date,
userno,
LAST_VALUE(userno) OVER(PARTITION BY polno) AS last2
FROM windows_ss;
结果:
polno eff_date userno last2
P066666666666 2016-04-02 09:00:02 user01 user32
P066666666666 2016-04-02 09:00:00 user02 user32
P066666666666 2016-04-02 09:03:04 user11 user32
P066666666666 2016-04-02 09:50:05 user03 user32
P066666666666 2016-04-02 10:00:00 user51 user32
P066666666666 2016-04-02 09:10:00 user09 user32
P066666666666 2016-04-02 09:50:01 user32 user32
P088888888888 2016-04-02 09:00:02 user41 user31
P088888888888 2016-04-02 09:00:00 user55 user31
P088888888888 2016-04-02 09:03:04 user23 user31
P088888888888 2016-04-02 09:50:05 user80 user31
P088888888888 2016-04-02 10:00:00 user08 user31
P088888888888 2016-04-02 09:10:00 user22 user31
P088888888888 2016-04-02 09:50:01 user31 user31
如果想要取分组内排序后最后一个值,则需要变通一下:
SELECT
polno,
eff_date,
userno,
ROW_NUMBER() OVER(PARTITION BY polno ORDER BY eff_date) AS rn,
LAST_VALUE(userno) OVER(PARTITION BY polno ORDER BY eff_date) AS last1,
FIRST_VALUE(userno) OVER(PARTITION BY polno ORDER BY eff_date DESC) AS last2
FROM windows_ss ORDER BY polno,eff_date;
polno eff_date userno rn last1 last2
P066666666666 2016-04-02 09:00:00 user02 1 user02 user51
P066666666666 2016-04-02 09:00:02 user01 2 user01 user51
P066666666666 2016-04-02 09:03:04 user11 3 user11 user51
P066666666666 2016-04-02 09:10:00 user09 4 user09 user51
P066666666666 2016-04-02 09:50:01 user32 5 user32 user51
P066666666666 2016-04-02 09:50:05 user03 6 user03 user51
P066666666666 2016-04-02 10:00:00 user51 7 user51 user51
P088888888888 2016-04-02 09:00:00 user55 1 user55 user08
P088888888888 2016-04-02 09:00:02 user41 2 user41 user08
P088888888888 2016-04-02 09:03:04 user23 3 user23 user08
P088888888888 2016-04-02 09:10:00 user22 4 user22 user08
P088888888888 2016-04-02 09:50:01 user31 5 user31 user08
P088888888888 2016-04-02 09:50:05 user80 6 user80 user08
P088888888888 2016-04-02 10:00:00 user08 7 user08 user08
注意:
在使用分析函数的过程中,要特别注意ORDERBY子句,用的不恰当,统计出的结果就不是你所期望的
Hive窗口函数之LAG、LEAD、FIRST_VALUE、LAST_VALUE的用法的更多相关文章
- Hive函数:LAG,LEAD,FIRST_VALUE,LAST_VALUE
参考自大数据田地:http://lxw1234.com/archives/2015/04/190.htm 测试数据准备: create external table test_data ( cooki ...
- Hive 窗口函数、分析函数
1 分析函数:用于等级.百分点.n分片等 Ntile 是Hive很强大的一个分析函数. 可以看成是:它把有序的数据集合 平均分配 到 指定的数量(num)个桶中, 将桶号分配给每一行.如果不能平均分配 ...
- hive窗口函数/分析函数详细剖析
hive窗口函数/分析函数 在sql中有一类函数叫做聚合函数,例如sum().avg().max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时 ...
- Hive 窗口函数
举例: row_number() over(partition by clue_id order by state_updated desc) 业务举例: select distinct a.clue ...
- Hive 窗口函数LEAD LAG FIRST_VALUE LAST_VALUE
窗口函数(window functions)对多行进行操作,并为查询中的每一行返回一个值. OVER()子句能将窗口函数与其他分析函数(analytical functions)和报告函数(repor ...
- Hive窗口函数保姆级教程
在SQL中有一类函数叫做聚合函数,例如sum().avg().max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时我们想要既显示聚集前的数据, ...
- Hive 窗口函数sum() over()求当前行和前面n条数据的和
前几天遇到一个这样的需求:销售总占比加起来超过75%的top分类.具体需求是这样的:商品一级分类标签下面有许多商品标签,例如运动户外一级标签,下面可能存在361°,CBA,Nike,Adidas... ...
- Hive学习之路 (十六)Hive分析窗口函数(四) LAG、LEAD、FIRST_VALUE和LAST_VALUE
数据准备 数据格式 cookie4.txt cookie1, ::,url2 cookie1, ::,url1 cookie1, ::,1url3 cookie1, ::,url6 cookie1, ...
- hive 取两次记录的时间差 lead lag first_value last_value
-- LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值 -- 第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如 ...
随机推荐
- 绘图、Core Animation与硬件架构
原文地址:http://blog.csdn.net/wzzvictory/article/details/11180241 转载请注明出处 如果觉得文章对你有所帮助,请通过留言或关注微信公众帐号wan ...
- [转]ASP.NET母版页中对控件ID的处理
一.问题提出 由于总体排版和设计的需要,我们往往创建母版页来实现整个网站的统一性,最近我由于统一性的需要,把原来整个项目单独的页面全部套用了母版页.但是出现了一个错误……在我的Blog中记录一下,方便 ...
- 【AngularJS学习笔记】封装一些简单的控件(封装成Html标签)
bootstrap有强大的指令系统,可以自定义一些属性,基本知识请移步:http://angularjs.cn/A00r http://www.cnblogs.com/lvdabao/p/33916 ...
- .net 网站中如何动态播放音乐,页面如何播放音乐
向别人请教有好处也有坏处,好处是你可以相对比较快的知道要点,坏处就是你TM的发现你弄了那么久都是白弄. 昨天今天一直在找一个问题的解决方案,我的问题描述大概是这样子的:我用vs2012开发的.net网 ...
- RAC Cache Fusion Background Processes
Acdante--每日三省吾身-- . 什么是缓存融合? .缓存融合工作原理? .缓存融合关键进程以及作用?
- Swift_枚举
Swift_枚举 点击查看源码 空枚举 //空枚举 enum SomeEnumeration { // enumeration definition goes here } 枚举基本类型 //枚举基本 ...
- 从tomcat下载文件的配置方法(很全呢)
前几天我做的项目有个下载文件的东西让我苦恼了一下,上传的文件没有放到OSS服务器,而是直接放到tomcat内, 我就想做一个a标签直接下载的得了,结果点开一直都说没有该文件,我查了很多资料找到了如何配 ...
- 简单json---转树形json
var data = [ {"fileName":"navone","layFilterId":"layadmin-system- ...
- 课时133.margintop失效原因(理解)
我们之前讲过如果只有子元素设置了margin top而父元素没有边框则会跟着被顶下来的. 而我们怎么解决这个问题呢? 就是给父元素设置一个边框 而为什么我们在第二个浮动的盒子设置边框没有用呢?应为第一 ...
- Redis学习笔记(一)
定义 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库. 从该定义中抽出几个关键信息,以表示Redis的特性: 存储结构:key-val ...