首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节点的平衡树我们可以由他的子节点启发式合并而来,时间复杂度nlog^2n。

  这道题还可以用左偏树来解决,左偏树为一种可合并堆,合并,删除,插入都在logn内完成,那么这道题的时间复杂度还可以nlogn。

  反思:我写的是左偏树的,手残把value打成cost了= =,查了半天。

 

/**************************************************************
    Problem: 2809
    User: BLADEVIL
    Language: C++
    Result: Accepted
    Time:3604 ms
    Memory:8060 kb
****************************************************************/
 
//By BLADEVIL
#include <cstdio>
#include <algorithm>
#define maxn 100010
#define LL long long
 
using namespace std;
 
int n,m,l;
int left[maxn],right[maxn];
int pre[maxn],other[maxn],last[maxn];
LL ans;
LL cost[maxn],value[maxn],size[maxn],sum[maxn];
 
void connect(int x,int y) {
    pre[++l]=last[x];
    last[x]=l;
    other[l]=y;
}
 
int combine(int x,int y) {
    if ((!x)||(!y)) return x+y;
    if (cost[x]<cost[y]) swap(x,y);
    right[x]=combine(right[x],y);
    sum[x]=sum[left[x]]+sum[right[x]]+cost[x];
    size[x]=size[left[x]]+size[right[x]]+;
    return x;
}
 
int work(int x) {
    sum[x]=cost[x]; size[x]=;
    int rot=x;
    for (int p=last[x];p;p=pre[p]) rot=combine(rot,work(other[p]));
    while (sum[rot]>m) rot=combine(left[rot],right[rot]);
    ans=max(ans,value[x]*size[rot]);
    return rot;
}
 
int main() {
    scanf("%d%d",&n,&m);
    for (int i=;i<=n;i++) {
        int x; scanf("%d%lld%lld",&x,&cost[i],&value[i]);
        if (x) connect(x,i);
    }
    work();
    printf("%lld\n",ans);
    return ;
}

bzoj 2809 左偏树\平衡树启发式合并的更多相关文章

  1. BZOJ 4003 左偏树

    思路: 用到了左偏树合并复杂度是logn的性质 一开始先BFS一遍 打标记的左偏树 //By SiriusRen #include <cstdio> #include <cstrin ...

  2. BZOJ 2333 左偏树 (写得我人生都崩溃了...)

    思路: 高一神犇 竟然 问我这道题   我光荣地  看着题解(划掉)  写了一下午 QaQ multiset不能erase(一个值)   这样就把等于这个值 的数都erase掉了  (woc我一开始不 ...

  3. 面试经典算法:优先队列,最大堆,堆排序,左偏树Golang实现

    堆排序 使用优先队列-最小/最大堆可实现. 优先队列 优先队列是一种能完成以下任务的队列:插入一个数值,取出最小的数值(获取数值,并且删除).优先队列可以用二叉树来实现,我们称这种为二叉堆. 最小堆 ...

  4. 【BZOJ4003】【JLOI2015】城池攻占(左偏树)

    题面 题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi ...

  5. 左偏树自己的一点理解【hdu1512】【Monkey King】

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=34693563 向大(hei)佬(e)势力学(di ...

  6. 洛谷$P4331\ [BOI2004]\ Sequence$ 数字序列 左偏树

    正解:左偏树 解题报告: 传送门$QwQ$ 开始看到的时候$jio$得长得很像之前做的一个$dp$,,, 但是$dp$那题是说不严格这里是严格? 不难想到我们可以让$a_{i},b_{i}$同时减去$ ...

  7. YbtOJ#631-次短路径【左偏树,最短路】

    正题 题目链接:https://www.ybtoj.com.cn/contest/114/problem/1 题目大意 给出\(n\)个点\(m\)条边的一张无向图,对于每个点\(i\)求不经过\(i ...

  8. BZOJ 2809: [Apio2012]dispatching(左偏树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...

  9. 【BZOJ 2809】2809: [Apio2012]dispatching (左偏树)

    2809: [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Maste ...

随机推荐

  1. 【MVC4升级到MVC5】ASP.Net MVC 4项目升级MVC 5的方法

    1.备份你的项目 2.从Web API升级到Web API 2,修改global.asax,将 ? 1 WebApiConfig.Register(GlobalConfiguration.Config ...

  2. TFS持续集成

    TFS持续集成的就是跟踪代码变更,合并,能够自定义脚本,任务进行自动化测试,发版,部署,有点像docker的味道.在这个代理服务器分布式中tfsserver起着能够随时拿去最新代码能够统一执行任务的角 ...

  3. VS2013 “未找到与约束 ContractName Microsoft.Internal.VisualStudio.PlatformUI.ISolutionAttachedCollectionService RequiredTypeIdentity Microsoft.Internal.VisualStudio.PlatformUI.ISolutionAttachedCollectionService 匹配的导出”

    下面是我出错误的附加图片 这个错误导致无法打开项目. 解决方法: 解: C:\Users\Administrator\AppData\Local\Microsoft\VisualStudio\12.0 ...

  4. 3dContactPointAnnotationTool开发日志(二二)

      昨天是实现了显示GameObject子GameObject的选项卡功能,今天就是要让statusPanel可以控制它们的位置.旋转和缩放了.   没什么难的,对应选项卡绑定上对应的物体或子物体即可 ...

  5. 【linux】- nohup 和 &

    &的意思是在后台运行, 什么意思呢? 意思是说,当你在执行 ./a.out & 的时候,即使你用ctrl C,那么a.out照样运行(因为对SIGINT信号免疫).但是要注意,如果你直 ...

  6. Qt MetaObject System详解

    网上的资源比较乱,该文章整理自地址:http://www.xuebuyuan.com/735789.html Qt meta-object系统基于三个方面: 1.QObject提供一个基类,方便派生类 ...

  7. delphi 取得数据集某字段值的六种方法

    //取name字段的示例   edit1.Text:=ADOquery1.Fields[2].AsString;   //取得数据表的第二个字段的值 edit2.Text:=ADOquery1.Fie ...

  8. Bootstrap如何适配移动浏览器

    移动设备优先 1.由meta标签决定的 <meta name="viewport" content="width=device-width, initial-sca ...

  9. Mybatis笔记二

    一对一查询 案例:查询所有订单信息,订单信息中显示下单人信息. 注意:因为一个订单信息只会是一个人下的订单,所以从查询订单信息出发关联查询用户信息为一对一查询.如果从用户信息出发查询用户下的订单信息则 ...

  10. BZOJ 1911 特别行动队(斜率优化DP)

    应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include < ...