转载:http://blog.ftofficer.com/2010/04/n-forms-of-call-instructions/

最近有一个需求,给你个地址,看看这个地址前面是不是一个CALL指令(请同学们自行联想该需求的来源)。作为团队的救火队员+炮灰,这个简单的事情自然落在了我的头上。

这个事情很简单,作为一个善于站在别人肩膀上的程序员我们可以考虑使用 libdisasm;如果要考虑x64,就试试udis86;如果需要用Python,就有Python包装好的 pydasm。不过这两个400KB+的库,显然不值得为了一个CALL指令导入到编译出来大小仅仅100K不到的项目代码里面。

那么就自己抽一个CALL指令解码逻辑出来好了。这个逻辑的复杂性在于,你无法知道前面一个CALL指令有多长。因此,首先需要枚举出所有的CALL指令格式。

Intel有公开的指令集格式文档,你需要的是第二卷的上半部分,指令集从A到M。这篇文档的难度超出一般人想象,里面有众多晦涩的标识、与硬件紧密相关的介绍,拿到这后,即使直接翻到目录的CALL 指令一节,也不见得能够弄清楚。不相信?我们就翻到那里看看:

CALL指令格式一览表

虽然很明确的列出,第一列是指令的二进制形式,第二列是指令的汇编形式,但是面对着 E8 cw, FF/2这样的标识,一样不知道究竟对应的二进制格式是什么样的。

那好,我们就从理解这些标识开始。文档向前翻,有一个专门的节(3.1.1 Instruction Format)讲述这些标识的含义。这里抽出其中两个用得着的翻译一下:

表格中的“Opcode”列列出了所有的所有可能的指令对应的二进制格式。有可能的话,指令代码使用十六进制显示它们在内存当中的字节。除了这些16进制代码之外的部分使用下面的标记:

cb, cw, cd, cp, co, ct — opcode后面跟着的一个1字节(cb),2字节(cw),4字节(cd),6字节 (cp),8字节(co) 或者 10字节(ct) 的值。这个值用来表示代码偏移地址,有可能的话还包括代码段寄存器的值。

/digit — digit为0到7之间的数字,表示指令的 ModR/M byte 只使用 r/m字段作为操作数,而其reg字段作为opcode的一部分,使用digit指定的数字。

红字部分不知道什么含义?没关系,我们先不看它。对于cb/cw之类的,基本上能够简单看明白其中的一些指令含义了:

E8 cw 的含义是:字节 0xE8 后面跟着一个2字节操作数表示要跳转到的地址与当前地址的偏移量。
E8 cd 的含义是:字节 0xE8 后面跟着一个4字节的操作数表示要跳转的地址与当前地址的偏移量。
9A cd 的含义是:字节 0x9A 后面跟着一个6字节的操作数表示要跳转的地址和代码段寄存器的值。

那么,同样的0xE8开头的指令,CPU如何区分后面的操作数是2字节还是4字节?答案是和CPU的模式有关,在实模式下,0xE8接受2字节操作数,而32位保护模式下接受4个字节,64位保护模式下同样接受4字节,同时需要对该操作数进行带符号扩展。

因此,CALL指令的前两种格式是:E8 xx xx xx xx,和 9A xx xx xx xx xx xx。一个是5字节长,一个是7字节长。其实E8 那种,就是我们在汇编指令里面写 CALL lable之后产生的,最常见的CALL指令。

然后是下面的FF /2。这个是0xFF字节后面跟上一个blablabla的东西。这个blablabla的东西是什么呢?要解释这个,首先需要知道红字标出来的部分,即ModR/M是什么东西。

这个要先回到最基本的一个问题:IA32的指令格式。

IA-32,Intel 64指令格式

其中每个部分是什么含义呢?

首先是指令前缀。有印象的应该记得当年学习微机原理的时候提到过得循环前缀 repnz/repne,这个前缀就是被编码在指令的前面部分的。每个前缀最多一个字节,一条指令最多4个前缀。

然后是指令代码(opcode),这部分标识了指令是什么。这个是指令当中唯一必需的部分。前面例子当中的 0xE8,0xFF都是opcode。

再后面就是我们要重点关心的 ModR/M字段了,还有和它密切相关的SIB字节。手册2.1.3当中有对于它们的详细描述。

许多指令需要引用到一个在内存当中的值作为操作数,这种指令需要一个称为寻址模式标识字节(addressing-form specifier byte),或者叫做ModR/M字节紧跟在主opcode后面。ModR/M字节包含下面三个部分的信息:

  • mod(模式)域,连同r/m(寄存器/内存)域共同构成了32个可能的值:8个寄存器和24个寻址模式。
  • reg/opcode(寄存器/操作数)域指定了8个寄存器或者额外的3个字节的opcode。究竟这三个字节用来做什么由主opcode指定。
  • r/m(寄存器/内存)域可以指定一个寄存器作为操作数,或者可以和mod域联合用来指定寻址模式。有时候,它和mod域一起用来为某些指令指定额外的信息。

这一段有些晦涩。其意思解释一下是这样的:一个指令往往需要引用一个在内存当中的值,典型的就是如mov:

MOV eax, dword ptr [123456]
MOV eax, dword ptr [esi]

这其中的 123456 或者 esi 就是 MOV 指令引用的内存地址,而MOV关心的是这个地址当中的内容。这个时候,需要某种方式来为指令指定这个操作数的类型:是一个立即数表示的地址,还是一个存放在寄存器当中的地址,或者,就是寄存器本身。

这个用来区分操作数类型的指令字节就是 ModR/M,确切的说是其中的5个位,即mod和r/m域。剩下的三个位,可能用来做额外的指令字节。因为,IA32的指令个数已经远超过一个字节所能表示的256个了。因此,有的指令就要复用第一个字节,然后依据ModR/M当中的reg/opcode域进行区分。

现在回头看前面的红字标识的部分,能不能理解 /digit 这种表示法了?

对于SIB的介绍,我们先忽略,看看对于CALL指令的枚举我们已经能做什么了。

CALL指令的表示法:FF /2,是 0xFF 后面跟着一个 /digit 表示的东西。就是说,0xFF后面需要跟一个 ModR/M 字节,ModR/M字节使用 reg/opcode 域 = 2 。那么,reg/opcode = 2 的字节有32个,正如ModR/M的解释,这32个值代表了32种不同的寻址方式。是哪32种呢?手册上面有张表:

32字节寻址模式下的ModR/M字节

非常复杂的一张表。现在就看看这张表怎么读。

首先是列的定义。由于 reg/opcode 域可以用来表示opcode,也可以用来表示reg,因此同一个值在不同的指令当中可能代表不同的含义。在表当中,就表现为每一列的表头都有很多个不同的表示。我们需要关心的就是 opcode 这一个。注意看我用红圈圈出来的部分,这一列就是 opcode=2 的一列。而我们需要的 CALL 指令,也就是在这一列当中,0xFF后面需要跟着的内容。

行的定义就是不同的寻址模式。正如手册所说,mod + R/M域,共5个字节,定义了32种寻址模式。0x10 – 0x17 对应于寄存器寻址。例如指令 CALL dword ptr [eax] :[eax]寻址对应的是 0x10,因此,该指令对应的二进制就是 FF 10。同理, CALL dword ptr [ebx] 是 FF 13,CALL dword ptr [esi] 是 FF 16,这些指令都是2个字节。有人也许问 CALL word ptr [eax] 是什么?抱歉,这不是一个合法的32位指令。

0x50-0x57部分需要带一个 disp8,即 8bit 立即数,也就是一个字节。这个是基地址+8位偏移量的寻址模式。例如 CALL dword ptr [eax+10] 就是 FF 50 10 。注意虽然表当中写的是 [eax] + disp8 这种形式,但是并不表示是取得 eax 指向的地址当中的值再加上 disp8,而是在eax上加上disp8再进行寻址。因此写成 [eax+disp8] 更不容易引起误解。后面的disp32也是一样的。这个类型指令是3个字节。

0x90 – 0x97部分需要带 disp32,即4字节立即数。这个是基地址+32位偏移量。例如 CALL dword ptr [eax+12345] 就是 FF 90 00 01 23 45。有趣的是, CALL dword ptr [eax+10] 也可以写成 FF 90 00 00 00 10。至于汇编成哪个二进制形式,这是汇编器的选择。这个类型的指令是6个字节。

0xD0 – 0xD7部分则直接是寄存器。这边引用的寄存器的类型有很多,但是在CALL指令当中只能引用通用寄存器,因此 CALL eax 就是 FF D0,臭名昭著的 CALL esp 就是 FF D4。注意 CALL eax 和 CALL [eax] 是不一样的。这些指令也是2个字节。

仔细的人也许主要到了,在表当中,0x14, 0x15, 0x54和0x94是不一样的。0x15比较简单,这个要求 ModR/M后面跟上一个32位立即数作为地址。即常见的 CALL dword ptr [004F778e] 这种格式的,直接跳转到一个固定内存地址处存放的值,常见于调用Windows的导出表。对应的二进制是 FF 15 00 4F 77 8E ,有6个字节。

0x14,0x54,0x94部分是最复杂的,因为这个时候,ModR/M不足以指定寻址方式,而是需要一个额外的字节,这个字节就是指令当中的第4个字节,SIB。同样在手册的2.1.3,紧跟着ModR/M的定义:

某些特定的ModR/M字节需要一个后续字节,称为SIB字节。32位指令的基地址+偏移量,以及 比例*偏移量 的形式的寻址方式需要SIB字节。 SIB字节包括下列信息:

  • scale(比例)域指定了放大的比例。
  • index(偏移)域指定了用来存放偏移量 的寄存器。
  • base (基地址)域用来标识存放基地址的寄存器。

0x14, 0x54, 0x94就是这里所说的“特定的ModR/M字节。这个字节后面跟着的SIB表示了一个复杂的寻址方式,典型的见于虚函数调用:

CALL dword ptr [ecx+4*eax]

就是调用ecx指向的虚表当中的第eax个虚函数。这个指令当中,因为没有立即数,因此FF后面的字节就是0x14,而 [ecx+4*eax] 就需要用SIB字节来表示。在这个指令当中,ecx就是 Base,4是Scale,eax是Index。

那么,Base, Scale和Index是如何确定的呢?手册上同样有一张表(又是巨大的表):

32位寻址模式当中的SIB字节

列是Base,行是Index*Scale,例如[ecx+4*eax] 就是0x81。

根据这张表,CALL dword ptr [ecx+4*eax] 就是 FF 14 81 。由此可见,对于 0x14系列的来说,CALL指令就是 3个字节。
而 0x54 带 8bit 立即数,就是对应于 CALL指令:CALL dword ptr [ecx+4*eax+xx],这个指令就是 FF 54 81 xx,是4个字节。
同理,0x94带32位立即数,对应于CALL指令:CALL dword ptr [ecx+4*eax+xxxxxxxx],这个指令就是 FF 94 81 xx xx xx xx,是7个字节。

OK,截止到目前,我们基本上能够列出常见的CALL指令的格式了:

指令 二进制形式
CALL rel32 E8 xx xx xx xx
CALL dword ptr [EAX] FF 10
CALL dword ptr [ECX] FF 11
CALL dword ptr [EDX] FF 12
CALL dword ptr [EBX] FF 13
CALL dword ptr [REG*SCALE+BASE] FF 14 xx
CALL dword ptr [abs32] FF 15 xx xx xx xx
CALL dword ptr [ESI] FF 16
CALL dword ptr [EDI] FF 17
CALL dword ptr [EAX+xx] FF 50 xx
CALL dword ptr [ECX+xx] FF 51 xx
CALL dword ptr [EDX+xx] FF 52 xx
CALL dword ptr [EBX+xx] FF 53 xx
CALL dword ptr [REG*SCALE+BASE+off8] FF 54 xx xx
CALL dword ptr [EBP+xx] FF 55 xx
CALL dword ptr [ESI+xx] FF 56 xx
CALL dword ptr [EDI+xx] FF 57 xx
CALL dword ptr [EAX+xxxxxxxx] FF 90 xx xx xx xx
CALL dword ptr [ECX+xxxxxxxx] FF 91 xx xx xx xx
CALL dword ptr [EDX+xxxxxxxx] FF 92 xx xx xx xx
CALL dword ptr [EBX+xxxxxxxx] FF 93 xx xx xx xx
CALL dword ptr [REG*SCALE+BASE+off32] FF 94 xx xx xx xx xx
CALL dword ptr [EBP+xxxxxxxx] FF 95 xx xx xx xx
CALL dword ptr [ESI+xxxxxxxx] FF 96 xx xx xx xx
CALL dword ptr [EDI+xxxxxxxx] FF 97 xx xx xx xx
CALL EAX FF D0
CALL ECX FF D1
CALL EDX FF D2
CALL EBX FF D3
CALL ESP FF D4
CALL EBP FF D5
CALL ESI FF D6
CALL EDI FF D7
CALL FAR seg16:abs32 9A xx xx xx xx xx xx

Intel call指令的更多相关文章

  1. intel instruction 指令速查

    参考:http://ref.x86asm.net/ http://ref.x86asm.net/coder32.html

  2. Intel 移位指令的陷阱(转)

    今天发现了一个Intel逻辑左移指令shl的一个bug.   逻辑左移的概念是对给定的目的操作数左移COUNT次,每次移位时最高位移入标志位CF中,最低位补零. 其中OPRD1为目的操作数, 可以是通 ...

  3. 从X86指令深扒JVM的位移操作

    概述 之所以会写这个,主要是因为最近做的一个项目碰到了一个移位的问题,因为位移操作溢出导致结果不准确,本来可以点到为止,问题也能很快解决,但是不痛不痒的感觉着实让人不爽,于是深扒了下个中细节,直到看到 ...

  4. 可怕!CPU暗藏了这些未公开的指令!

    大家好,我是轩辕. 我们知道,我们平时编程写的高级语言,是经过编译器编译以后,变成了CPU可以执行的机器指令: 而CPU能支持的指令,都在它的指令集里面了. 很久以来,我都在思考一个问题: CPU有没 ...

  5. [转]Linux下的lds链接脚本详解

    转载自:http://linux.chinaunix.net/techdoc/beginner/2009/08/12/1129972.shtml     一. 概论 每一个链接过程都由链接脚本(lin ...

  6. Chrome的Crash Report服务

    <本文转自:http://www.cppblog.com/woaidongmao/archive/2009/10/22/99211.aspx> 本文翻译自debugInfo网站上一篇文章g ...

  7. Linux下的lds链接脚本基础

    转载:http://soft.chinabyte.com/os/104/12255104.shtml   今天在看uboot引导Linux部分,发现要对链接脚本深入了解,才能知道各个目标文件的内存分布 ...

  8. Linux下的lds链接脚本简介

    转载:http://hubingforever.blog.163.com/blog/static/171040579201192472552886/   一. 概论 每一个链接过程都由链接脚本(lin ...

  9. RHEL 7特性说明(七):编译程序及工具

    转载自:RedHat https://access.redhat.com/documentation/zh-CN/Red_Hat_Enterprise_Linux/7/html/7.0_Release ...

随机推荐

  1. [计算机网络] TCP的拥塞控制

    引言 计算机网络中的带宽.交换结点中的缓存和处理机等,都是网络的资源.在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就会变坏.这种情况就叫做拥塞. 拥塞控制就是防止过多 ...

  2. 使用 ECS 实例创建 FTP 站点 linux

    本文只做记载过程和问题,并不详细 官方教程走一遍 https://help.aliyun.com/document_detail/51998.html#h2-linux-ftp-2 值得注意的是步骤二 ...

  3. bootstrap 有些控件需要调用锚点,会与angular 路由 冲突

    最简单的方法 就是 在 #号前加/, 但有人说 在服务器上回失效,也不知道是什么原理.慎用 最靠谱的方法 就 是 使用bootstrap中的js控制控件, 比如轮播图的上一页 下一页,就可以在 ang ...

  4. Spring Boot 运行原理

    Spring Boot并没有任何新的技术,全都是基于Spring4提供的技术,用优秀的设计,为Web开发提供了一套新的方式. 在HelloWorld中,我们没有进行任何显示的配置,但是程序还是运行起来 ...

  5. 调用init方法 两种方式 一个是浏览器方法 一个是 xml中手工配置(load-on-startup)

    调用init方法 两种方式 一个是浏览器方法 一个是 xml中手工配置(load-on-startup)

  6. 【bzoj2073】[POI2004]PRZ 状态压缩dp

    题目描述 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍在桥上的人都不能超过一定的限制. 所以这只队伍过桥时只能分批 ...

  7. Python 断言和异常

    Python 断言和异常 Python断言 断言是一种理智检查,当程序的测试完成,可以将其打开或关闭.断言的最简单方法就是把它比作raise-if语句(或更加准确,raise-if-not声明).一个 ...

  8. [洛谷P4847]银河英雄传说V2

    题目大意:有$n(n\leqslant2\times10^5)$个序列,有$m(m\leqslant2\times10^5)$个操作,分三种: 1. $M\;x\;y:$把$x$所在的序列放在$y$所 ...

  9. BZOJ4754 & 洛谷4323 & LOJ2072:[JSOI2016]独特的树叶——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4754 https://www.luogu.org/problemnew/show/P4323 ht ...

  10. HDU5115:Dire Wolf——题解+翻译

    http://acm.hdu.edu.cn/showproblem.php?pid=5115 题目大意:给n匹狼,每一次攻击可以秒杀一匹狼,但同时会受到这匹狼的a攻击和它相邻两只狼的b攻击. 给定a, ...