Bloom Filter是一个占用空间很小、效率很高的随机数据结构,它由一个bit数组和一组Hash算法构成。可用于判断一个元素是否在一个集合中,查询效率很高(1-N,最优能逼近于1)。

在很多场景下,我们都需要一个能迅速判断一个元素是否在一个集合中。譬如:

网页爬虫对URL的去重,避免爬取相同的URL地址;

反垃圾邮件,从数十亿个垃圾邮件列表中判断某邮箱是否垃圾邮箱(同理,垃圾短信);

缓存击穿,将已存在的缓存放到布隆中,当黑客访问不存在的缓存时迅速返回避免缓存及DB挂掉。

可能有人会问,我们直接把这些数据都放到数据库或者redis之类的缓存中不就行了,查询时直接匹配不就OK了?

是的,当这个集合量比较小,你内存又够大时,是可以这样做,你可以直接弄个HashSet、HashMap就OK了。但是当这个量以数十亿计,内存装不下,数据库检索极慢时该怎么办。

以垃圾邮箱为例

方案比较

1.将所有垃圾邮箱地址存到数据库,匹配时遍历
2.用HashSet存储所有地址,匹配时接近O(1)的效率查出来
3.将地址用MD5算法或其他单向映射算法计算后存入HashSet,无论地址多大,保存的只有MD5后的固定位数
4.布隆过滤器,将所有地址经过多个Hash算法,映射到一个bit数组

优缺点

方案1和2都是保存完整的地址,占用空间大。一个地址16字节,10亿即可达到上百G的内存。HashSet效率逼近O(1),数据库就不谈效率了,不在一个数量级。
方案3保存部分信息,占用空间小于存储完整信息,存在冲突的可能(非垃圾邮箱可能MD5后和某垃圾邮箱一样,概率低)
方案4将所有地址经过Hash后映射到同一个bit数组,看清了,只有一个超大的bit数组,保存所有的映射,占用空间极小,冲突概率高。

大家知道,java中的HashMap有个扩容参数默认是0.75,也就是你想存75个数,至少需要一个100的数组,而且还会有不少的冲突。实际上,Hash的存储效率是0.5左右,存5个数需要10个的空间。算起来占用空间还是挺大的。
而布隆过滤器就不用为每个数都分配空间了,而是直接把所有的数通过算法映射到同一个数组,带来的问题就是冲突上升,只要概率在可以接受的范围,用时间换空间,在很多时候是好方案。布隆过滤器需要的空间仅为HashMap的1/8-1/4之间,而且它不会漏掉任何一个在黑名单的可疑对象,问题只是会误伤一些非黑名单对象。

原理

初始化状态是一个全为0的bit数组

为了表达存储N个元素的集合,使用K个独立的函数来进行哈希运算。x1,x2……xk为k个哈希算法。
如果集合元素有N1,N2……NN,N1经过x1运算后得到的结果映射的位置标1,经过x2运算后结果映射也标1,已经为1的报错1不变。经过k次散列后,对N1的散列完成。
依次对N2,NN等所有数据进行散列,最终得到一个部分为1,部分位为0的字节数组。当然了,这个字节数组会比较长,不然散列效果不好。
那么怎么判断一个外来的元素是否已经在集合里呢,譬如已经散列了10亿个垃圾邮箱,现在来了一个邮箱,怎么判断它是否在这10亿里面呢?
很简单,就拿这个新来的也依次经历x1,x2……xk个哈希算法即可。
在任何一个哈希算法譬如到x2时,得到的映射值有0,那就说明这个邮箱肯定不在这10亿内。
如果是一个黑名单对象,那么可以肯定的是所有映射都为1,肯定跑不了它。也就是说是坏人,一定会被抓。
那么误伤是为什么呢,就是指一些非黑名单对象的值经过k次哈希后,也全部为1,但它确实不是黑名单里的值,这种概率是存在的,但是是可控的。





上面的几个图看起来很高深,但那不是我们关心的问题,归根到底意思其实就是你想让错误率降低,就得增大数组的长度,就是这样。
我们使用BloomFilter的目的就是想省空间,所以我们需要做的就是在错误率上做个权衡就OK。
很多时候这个错误率我们是能接受的,譬如垃圾邮箱问题,是坏人一定会被抓,这个能保证。无非是一些好人也被抓,这个可以通过给这些可伶的被误伤的设置个白名单就OK。至于爬虫Url重复这个就更没问题了,会缺掉一些网页而已。
至于在缓存穿透上的应用,是为了避免恶意用户频繁请求缓存中不存在DB也不存在的值,会导致缓存失效、DB负载过大,可以使用BloomFilter把所有数据放到bit数组中,当用户请求时存在的值肯定能放行,部分不存在的值也会被放行,绝大部分会被拦截,这些少量漏网之鱼对于DB的影响就会比大量穿透好的多了。

讲了这么多,可以看到,原理很简单,但要实际做一个BloomFilter可就麻烦了,已经属于科学家的范畴了,好在早早有人已经搞定了java版的实现,用法很简单,下一篇看看。



使用BloomFilter布隆过滤器解决缓存击穿、垃圾邮件识别、集合判重的更多相关文章

  1. 第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

    第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详 ...

  2. 三十七 Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

    Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...

  3. 将bloomfilter(布隆过滤器)集成到scrapy-redis中

    Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如 ...

  4. BloomFilter(布隆过滤器)

    原文链接:http://blog.csdn.net/qq_38646470/article/details/79431659 1.概念: 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保 ...

  5. BloomFilter布隆过滤器

    BloomFilter 简介 当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1.检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些 ...

  6. 布隆过滤器redis缓存

    Bloom Filter布隆过滤器算法背景如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构 ...

  7. BloomFilter布隆过滤器使用

    从上一篇可以得知,BloomFilter的关键在于hash算法的设定和bit数组的大小确定,通过权衡得到一个错误概率可以接受的结果. 算法比较复杂,也不是我们研究的范畴,我们直接使用已有的实现. go ...

  8. 详细解析Redis中的布隆过滤器及其应用

    欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告 ...

  9. Redis中的布隆过滤器及其应用

    什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西 ...

随机推荐

  1. 吴超老师课程--Pig的介绍和安装

    1.Pig是基于hadoop的一个数据处理的框架.  MapReduce是使用java进行开发的,Pig有一套自己的数据处理语言,Pig的数据处理过程要转化为MR来运行. 2.Pig的数据处理语言是数 ...

  2. table实现 js数据访问 传递json数据用render_to_response

    $(document).ready(function(){ $.ajax({ url:'/query/', dataType:'json', type:'GET', success:function( ...

  3. django生成json

    好方便啊……list什么的一下都变成json了呢! import json from django.core.serializers.json import DjangoJSONEncoder def ...

  4. linq中将int类型转换为string类型,toString()报错

    今天同事在调试程序的时候,报了一个不寻常的错误, “LINQ to Entities 不识别方法"System.String ToString()",因此该方法无法转换为存储表达式 ...

  5. PHP 权限管理

    login页面 <form action="loginchuli.php" method="post"> <div>用户名:<in ...

  6. ng-click得到当前元素,

    直接上代码: <!DOCTYPE html> <html> <head> <title></title> <script src=&q ...

  7. 20145219 《Java程序设计》第10周学习总结

    20145219 <Java程序设计>第10周学习总结 教材学习内容总结 Java的网络编程 网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据. 网络概述 1.计算机 ...

  8. web页面如何打包封闭成手机APP

    所谓的webApp就是html页面跟原生app结合而成的一种应用,这种应用的开发可以节省不少的成本,做出来的app跟原生一样,webApp利用框架技术可以让你有使用app的感觉,具体可以看平安银行的a ...

  9. Luogu-3648 [APIO2014]序列分割

    Luogu-3648 [APIO2014]序列分割 题目链接 题解: 首先要发现一个重要的性质:分割的顺序是不会影响答案的 证明: 首先对于没有交的两段区间,显然先后顺序改变不会有影响 而对于在同一段 ...

  10. UVA 1639 Candy (组合数+精度)

    题意:两个箱子,每个箱子有n颗糖,每次有p的概率拿1号箱子的一颗糖出来(有1-p的概率拿2号箱子的一颗糖出来),问当打开某个箱子为空的时候,另一个箱子的期望糖的数量是多少 题解:枚举另一个箱子的糖的数 ...