【tensorflow:Google】一、深度学习简介
参考文献:《Tensorflow:实战Google深度学习框架》
【一】深度学习简介
1.1 深度学习定义
Mitchell对机器学习的定义:任务T上,随着经验E的增加,效果P也可以随之增加,那么程序可以在经验中学习。
传统机器学习算法的问题:无法从数据中习得更好的特征表达,从而无法有效的利用越来越多的数据
难点:如何数字化的表达现实世界中的实体;将非结构化的内容结构化;从实体中提取特征。
传统机器学习与深度学习的对比
1.2 深度学习历史
深度学习三阶段:
一、仿生机器学习:
1943年神经网络,
1958年感知机模型:首个根据数据学习特征权重的模型
1969:感知机只能解决线性可分问题,不能解决异或问题。 ——导致了神经网络的第一次低潮
二、分布式知识表达(distributed representation)和反向传播算法。
1990:分布式知识表达:现实世界中的概念应该通过多个神经元来表达,模型中每个神经元应该表达不同概念。
知识从宽度向深度发展,能够习得另外的组合知识。n*m个缩减到n+m个。
1990:Rumelhart \ Hinton \ Williams 反向传播算法,计算能力大幅提高。
卷积神经网络、循环神经网络在发展
1990: Hochreiter \ Schmidhuber LSTM算法
三、数据量提升 \ 计算能力提高
ImageNet, Krizhevsky AlexNet,引入深度学习。
1.3 深度学习应用
主要应用范围:
1、计算机视觉:图像分类 (ILSVRC)、物体识别(人脸识别:传统机器学习很难抽取特征)、图像搜索、字符识别
2、语音识别:机器翻译、语音合成
3、自然语言处理:
4、人机博弈:
AlphaGo的三部分:蒙特卡洛树搜索、估值网络、走棋网络。
蒙特卡洛树搜索:对不同落子点进行搜索
走棋网络:给定棋盘,判断下一步落子点
估值网络:给定棋盘,判断胜率
【tensorflow:Google】一、深度学习简介的更多相关文章
- TensorFlow+Keras 01 人工智能、机器学习、深度学习简介
1 人工智能.机器学习.深度学习的关系 “人工智能” 一词最早是再20世纪50年代提出来的. “ 机器学习 ” 是通过算法,使用大量数据进行训练,训练完成后会产生模型 有监督的学习 supervise ...
- TensorFlow与主流深度学习框架对比
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年 ...
- 基于TensorFlow Serving的深度学习在线预估
一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1] ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
- TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...
- Tensorflow 深度学习简介(自用)
一些废话,也可能不是废话.可能对,也可能不对. 机器学习的定义:如果一个程序可以在任务T上,随着经验E的增加,效果P也可以随之增加,则称这个程序可以在经验中学习. “程序”指的是需要用到的机器学习算法 ...
- TensorFlow系列专题(三):深度学习简介
一.深度学习的发展历程 深度学习的起源阶段 深度学习的发展阶段 深度学习的爆发阶段 二.深度学习的应用 自然语言处理 语音识别与合成 图像领域 三.参考文献 一.深度学习的发展历程 作为机器学习最 ...
- 大数据下基于Tensorflow框架的深度学习示例教程
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较 ...
- TensorFlow+Keras 02 深度学习的原理
1 神经传递的原理 人类的神经元传递及其作用: 这里有几个关键概念: 树突 - 接受信息 轴突 - 输出信息 突触 - 传递信息 将其延伸到神经元中,示意图如下: 将上图整理成数学公式,则有 y = ...
随机推荐
- virtualenv使用
virtualenv安装不同版本的python 来自为知笔记(Wiz)
- oracle 创建视图、修改视图、删除视图、利用视图操作基本表
转:http://blog.sina.com.cn/s/blog_6b58d2fa0100rgvw.html 1.使用create or replace view命令创建视图 语法格式: create ...
- HackerRank - powers-game-1 【博弈论】
HackerRank - powers-game-1 [博弈论] 题意 给出 * 2^1 * 2^2 * 2^3 * 2^4 * 2^5 * 2^n 这一串东西 ,然后有两个玩家,*号是可以被替换掉的 ...
- display:inline-block; 去除间隙的方法 总结:
个人常用: 如: <ul> <li><a href="#" >实时数据</a></li> <li><a ...
- React Native混合开发中必须要学会点FlexBox布局
在前面的案例中,界面的搭建都是采用CSS的布局,基于盒子模型,依赖 display属性 , position属性, float属性.但对于那些特殊布局非常不方便,比如,垂直居中. 一种全新的针对web ...
- 单片机、嵌入式CAN通信原理
工作原理: 单片机里内置了一个FIFO(先进先出)芯片,需要发送什么报文,就往这个芯片里写.比如有两个单片机作为CAN节点,A节点往自己的FIFO中写CAN报文,B节点往自己的FIFO中写CAN报文. ...
- cocoa中获得root权限的几种方法
目前我所知道的,在cocoa中获得root权限的方法有3种: 1. 通过AuthorizationCopyRights函数 2. 在UI上添加一个锁的样子的控件,然后通过开关这个锁来获取root权限 ...
- Mysql数据库导出sql脚本
1. 运行环境Centos mysqldump -h localhost -u root -p etv > ./etv.sql etv 是要导出的数据库名 > 设置导出的路径和文件名
- Multiple actions were found that match the request in Web Api
https://stackoverflow.com/questions/14534167/multiple-actions-were-found-that-match-the-request-in-w ...
- postgre数据库插入错误:prepared statement “S_1”already exist, 解决办法
在使用kettle工具(数据迁移软件)在postgre数据库中插入记录时,出现如下错误,解决办法: 在/etc/pgsql/pgbouncer.ini中修改配置,设置 server_reset_que ...