1.训练模型:建bucket,建job,提交运行。

BUCKET_NAME=gs://${USER}_yt8m_train_bucket_logisticmodel
# (One Time) Create a storage bucket to store training logs and checkpoints.
gsutil mb -l us-east1 $BUCKET_NAME
# Submit the training job.
JOB_NAME=yt8m_train_LogisticModel$(date +%Y%m%d_%H%M%S); gcloud --verbosity=debug ml-engine jobs \
submit training $JOB_NAME \
--package-path=youtube-8m --module-name=youtube-8m.train \
--staging-bucket=$BUCKET_NAME --region=us-east1 \
--config=youtube-8m/cloudml-gpu.yaml \
-- --train_data_pattern='gs://youtube8m-ml-us-east1/1/video_level/train/train*.tfrecord' \
--model=LogisticModel \
--train_dir=$BUCKET_NAME/yt8m_train_video_level_logistic_model BUCKET_NAME=gs://${USER}_yt8m_train_bucket_lstmmodel
gsutil mb -l us-east1 $BUCKET_NAME
JOB_NAME=yt8m_train_LstmModel$(date +%Y%m%d_%H%M%S); gcloud --verbosity=debug ml-engine jobs \
submit training $JOB_NAME \
--package-path=youtube-8m --module-name=youtube-8m.train \
--staging-bucket=$BUCKET_NAME --region=us-east1 \
--config=youtube-8m/cloudml-gpu.yaml \
-- --train_data_pattern='gs://youtube8m-ml-us-east1/1/frame_level/train/train*.tfrecord' \
--frame_features=True --model=LstmModel --feature_names="rgb" \
--feature_sizes="" --batch_size= \
--train_dir=$BUCKET_NAME/yt8m_train_frame_level_lstmModel BUCKET_NAME=gs://${USER}_yt8m_train_bucket_framelevellogisticmodel
gsutil mb -l us-east1 $BUCKET_NAME
JOB_NAME=yt8m_train_FrameLevelLogisticModel$(date +%Y%m%d_%H%M%S); gcloud --verbosity=debug ml-engine jobs \
submit training $JOB_NAME \
--package-path=youtube-8m --module-name=youtube-8m.train \
--staging-bucket=$BUCKET_NAME --region=us-east1 \
--config=youtube-8m/cloudml-gpu.yaml \
-- --train_data_pattern='gs://youtube8m-ml-us-east1/1/frame_level/train/train*.tfrecord' \
--frame_features=True --model=FrameLevelLogisticModel --feature_names="rgb" \
--feature_sizes="" --batch_size= \
--train_dir=$BUCKET_NAME/yt8m_train_video_framelevel_logisticmodel BUCKET_NAME=gs://${USER}_yt8m_train_bucket_dbofmodel
gsutil mb -l us-east1 $BUCKET_NAME
JOB_NAME=yt8m_train_DbofModel$(date +%Y%m%d_%H%M%S); gcloud --verbosity=debug ml-engine jobs \
submit training $JOB_NAME \
--package-path=youtube-8m --module-name=youtube-8m.train \
--staging-bucket=$BUCKET_NAME --region=us-east1 \
--config=youtube-8m/cloudml-gpu.yaml \
-- --train_data_pattern='gs://youtube8m-ml-us-east1/1/frame_level/train/train*.tfrecord' \
--frame_features=True --model=DbofModel --feature_names="rgb" \
--feature_sizes="" --batch_size= \
--train_dir=$BUCKET_NAME/yt8m_train_frame_level_dbofmodel

2.查看log,训练过程

点击侧边栏的logging可以查看程序输出。

tensorboard:https://cloud.google.com/ml-engine/docs/how-tos/getting-started-training-prediction#tensorboard-local

OUTPUT=$BUCKET_NAME/yt8m_train_video_framelevel_logisticmodel       (就是填入train_dir的内容)
python -m tensorflow.tensorboard --logdir=$OUTPUT --port=8080

Select "Preview on port 8080" from the Web Preview menu at the top of the command-line.

3.在测试集上进行测试:

JOB_TO_EVAL=yt8m_train_video_level_logistic_model
JOB_NAME=yt8m_inference_$(date +%Y%m%d_%H%M%S); gcloud --verbosity=debug ml-engine jobs \
submit training $JOB_NAME \
--package-path=youtube-8m --module-name=youtube-8m.inference \
--staging-bucket=$BUCKET_NAME --region=us-east1 \
--config=youtube-8m/cloudml-gpu.yaml \
-- --input_data_pattern='gs://youtube8m-ml/1/video_level/test/test*.tfrecord' \
--train_dir=$BUCKET_NAME/${JOB_TO_EVAL} \
--output_file=$BUCKET_NAME/${JOB_TO_EVAL}/predictions.csv JOB_NAME=yt8m_dbofmodel_inference_$(date +%Y%m%d_%H%M%S); gcloud --verbosity=debug ml-engine jobs \
submit training $JOB_NAME \
--package-path=youtube-8m --module-name=youtube-8m.inference \
--staging-bucket=$BUCKET_NAME --region=us-east1 \
--config=youtube-8m/cloudml-gpu.yaml \
-- --input_data_pattern='gs://youtube8m-ml-us-east1/1/frame_level/test/test*.tfrecord' \
--frame_features=True --model=FrameLevelLogisticModel --feature_names="rgb" \
--feature_sizes="" --batch_size= \
--train_dir=$BUCKET_NAME/${JOB_TO_EVAL} \
--output_file=$BUCKET_NAME/${JOB_TO_EVAL}/predictions.csv JOB_NAME=yt8m_framelevellogistic_inference_$(date +%Y%m%d_%H%M%S); gcloud --verbosity=debug ml-engine jobs \
submit training $JOB_NAME \
--package-path=youtube-8m --module-name=youtube-8m.inference \
--staging-bucket=$BUCKET_NAME --region=us-east1 \
--config=youtube-8m/cloudml-gpu.yaml \
-- --input_data_pattern='gs://youtube8m-ml-us-east1/1/frame_level/test/test*.tfrecord' \
--frame_features=True --model=FrameLevelLogisticModel --feature_names="rgb" \
--feature_sizes="" --batch_size= \
--train_dir=$BUCKET_NAME/${JOB_TO_EVAL} \
--output_file=$BUCKET_NAME/${JOB_TO_EVAL}/predictions.csv

kaggle比赛之youtube视频分类示例的更多相关文章

  1. Kaggle比赛:从何着手?

    介绍 参加Kaggle比赛,我必须有哪些技能呢? 你有没有面对过这样的问题?最少在我大二的时候,我有过.过去我仅仅想象Kaggle比赛的困难度,我就感觉害怕.这种恐惧跟我怕水的感觉相似.怕水,让我无法 ...

  2. Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量

    Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量 from:https://www.leiphone.com/news/201712/zbX22Ye5wD6CiwCJ.html 导语 ...

  3. Kaggle比赛总结

    做完 Kaggle 比赛已经快五个月了,今天来总结一下,为秋招做个准备. 题目要求:根据主办方提供的超过 4 天约 2 亿次的点击数据,建立预测模型预测用户是否会在点击移动应用广告后下载应用程序. 数 ...

  4. kaggle比赛流程(转)

    一.比赛概述 不同比赛有不同的任务,分类.回归.推荐.排序等.比赛开始后训练集和测试集就会开放下载. 比赛通常持续 2 ~ 3 个月,每个队伍每天可以提交的次数有限,通常为 5 次. 比赛结束前一周是 ...

  5. Kaggle比赛(一)Titanic: Machine Learning from Disaster

    泰坦尼克号幸存预测是本小白接触的第一个Kaggle入门比赛,主要参考了以下两篇教程: https://www.cnblogs.com/star-zhao/p/9801196.html https:// ...

  6. Kaggle比赛(二)House Prices: Advanced Regression Techniques

    房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-lead ...

  7. 我的第一个 Kaggle 比赛学习 - Titanic

    背景 Titanic: Machine Learning from Disaster - Kaggle 2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手. 两年后,再 ...

  8. Kaggle比赛NCFM图像分类任务简介

    为了保护和监控海洋环境及生态平衡,大自然保护协会(The Nature Conservancy)邀请Kaggle社区的参赛者们开发能够出机器学习算法,自动分类和识别远洋捕捞船上的摄像头拍摄到的图片中鱼 ...

  9. kaggle比赛之悟

    一.模型与特征哪个重要? 参与Sberbank Russian Housing Market比赛,一开始使用sklearn的岭回归函数Ridge(),残差值一直是0.37左右,然后同样的特征又使用了X ...

随机推荐

  1. Node.js aitaotu图片批量下载Node.js爬虫1.00版

    即使是https网页,解析的方式也不是一致的,需要多试试. 代码: //====================================================== // aitaot ...

  2. 创建CSS3警示框渐变动画

    来源:GBin1.com 在线演示   在线下载 现代的网页设计技术已经允许开发人员在大多数浏览器中快速实现所支持的动画,其中消息警示是非常普遍的.由于默认的JavaScript警示框往往设计不佳和过 ...

  3. Linux命令之编辑

    vi是终端命令行里功能最强的文本编辑器了,但眼下须要用到的仅仅是文本编辑功能.与GCC.make等工具的整合应用如今还不须要,所以操作难度不大,习惯就好. Linux发行版所带的一般不是vi,而是vi ...

  4. 算法笔记_064:蓝桥杯练习 操作格子(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 有n个格子,从左到右放成一排,编号为1-n. 共有m次操作,有3种操作类型: 1.修改一个格子的权值, 2.求连续一段格子权值和, 3.求 ...

  5. 【前端】JavaScript

    一.JavaScript概述 1.JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEa ...

  6. jQuery自动加载更多程序(转)

    jQuery自动加载更多程序   1.1.1 摘要 现在,我们经常使用的微博.微信或其他应用都有异步加载功能,简而言之,就是我们在刷微博或微信时,移动到界面的顶端或低端后程序通过异步的方式进行加载数据 ...

  7. python selenium ---键盘事件

    转自:http://www.cnblogs.com/fnng/p/3258946.html 本节重点: l 键盘按键用法 l 键盘组合键用法 l send_keys() 输入中文运行报错问题 键盘按键 ...

  8. mongodb - 查看正在执行的操作

    查看正在执行的操作 db.currentOp() 查看系统执行的操作 db.currentOp(True) kill正在执行的操作 db.killOp(<operation id>) 示例 ...

  9. CSDN开源夏令营 百度数据可视化实践 ECharts(8)

    (1)前言 首先谢谢林峰老师,继续接着第七篇提到的内容.CSS布局确实非常累,感觉不好看了就的调整,总的看起来的高大上嘛.好了废话不再多说.今天主要就先解说一个页面的内容,对于CSS布局后面讲会具体的 ...

  10. 每天进步一点点——Ganglia的Python扩展模块开发

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/39701245 注:本文涉及到的代码都在centos 6.5 64bit系统上通过验证,Gan ...