第11章:最长公共子序列(LCS:Longest Common Subsequence)
方法:动态规划 《算法导论》P208
最优子结构 + 重叠子问题
设xi,yi,为前i个数(前缀)
设c[i,j]为xi,yi的LCS的长度
c[i,j] = 0 (i ==0 || j == 0)
c[i,j] = a[i-1,j-1] + 1 (i,j>0 &&xi=yi)
c[i,j] = max(c[i,j-1],c[i-1,j])
求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两 个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。
【最长公共子序列的结构】
设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>,
则:
1. 若xm=yn,则zk=xm=yn 且Zk-1 是Xm-1 和Yn-1 的最长公共子序列;
2. 若xm≠yn 且zk≠xm ,则Z 是Xm-1 和Y 的最长公共子序列;
3. 若xm≠yn 且zk≠yn ,则Z 是X 和Yn-1 的最长公共子序列。
由此递归结构容易看到最长公共子序列问题具有子问题重叠性质。
由于在所考虑的子问题空间中,总共只有θ(m*n)个不同的 子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。
【编码实现】
输出两个数组c[0..m ,0..n]和b[1..m ,1..n]。其中c[i,j]存储
Xi 与Yj 的最长公共子序列的长度,b[i,j]记录指示c[i,j]的值是由哪一个子问题的解达到的,
这在构造最长公共子序列时要用到。最后,X 和Y 的最长公共子序列的长度记录于c[m,n]
中。
【相似的解决方法:构造矩阵】
import java.util.Random; public class LCS{ public static void main(String[] args){ int substringLength1 = 20; int substringLength2 = 20; String x = GetRandomStrings(substringLength1); String y = GetRandomStrings(substringLength2); Long startTime = System.nanoTime(); int[][] opt = new int[substringLength1 + 1][substringLength2 + 1]; for(int i = substringLength1 - 1;i>=0;i--){ for(int j =substring2 -1;j>=0;j--){ if(x.charAt(i) = y.charAt(j)) opt[i][j] = opt[i+1][j+1] + 1; else opt[i][j] = Math.max(opt[i+1][j],opt[i][j+1]); } } System.out.println("substring1:"+x); System.out.println("substring2:"+y); System.out.print("LCS:"); int i = 0, j = 0; while (i < substringLength1 && j < substringLength2){ if (x.charAt(i) == y.charAt(j)){ System.out.print(x.charAt(i)); i++; j++; } else if (opt[i + 1][j] >= opt[i][j + 1]) i++; else j++; } Long endTime = System.nanoTime(); } } |
第11章:最长公共子序列(LCS:Longest Common Subsequence)的更多相关文章
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)
分析: 完整代码: // 最长公共子序列 #include <stdio.h> #include <algorithm> using namespace std; ; char ...
- (最长公共子序列 暴力) Common Subsequence (poj 1458)
http://poj.org/problem?id=1458 Description A subsequence of a given sequence is the given sequence w ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- SpringMVC 之数据转换和国际化
1. 数据绑定流程 SpringMVC 主框架将 ServletRequest 对象及目标方法的入参实例传递给 WebDataBinderFactory 实例,以创建 DataBinder 实例对象; ...
- django 单元测试小结
测试的场景 框架Django1.8 测试工具 unittest, 要记得给test设置一个独特的settings. 测试请求 也就是测试整个view部分 官方案例 其中可能会遇到登录,或者时sessi ...
- python 作用域知识点整理
1.块级作用域 想想此时运行下面的程序会有输出吗?执行会成功吗? 1 2 3 4 5 6 7 8 9 10 11 12 #块级作用域 if 1 == 1: name = "lzl ...
- node.js---sails项目开发(4)---配置MongoDB数据库连接
1.安装sails对mongo的依赖 npm install sails-mongo --save 2. 配置mongo连接 修改config/connections.js: module.expor ...
- html当前文档的状态
<script type="text/javascript"> document.onreadystatechange = loadingChange;//当页面加载状 ...
- python16_day09【Select多路复用】
一.select多路复用 句柄列表11, 句柄列表22, 句柄列表33 = select.select(句柄序列1, 句柄序列2, 句柄序列3, 超时时间) 参数: 可接受四个参数(前三个必须) 返回 ...
- python16_day06【类、RE模块、subprocess模块、xml模块、shelve模块】
一.shelve模块 import shelve # 基于pickle模块, d = shelve.open('shelve_test') class Test(object): def __init ...
- mysql第三天作业
1.将所有的课程的名称以及对应的任课老师姓名打印出来,如下:SELECT cname,tname FROM course LEFT JOIN teacher ON teacher.tid=course ...
- 微信小程序之日期与时间插件
页面 <picker mode="time" value="{{time}}" start="{{minTime}}" end=&qu ...
- NGUI,多相机共存时,控制显示的元素
当多个相机存在于一个场景中时,我们需要控制某些元素的可见性来达到我们想要的结果. 1:某个相机不需要看见的元素,统一用一个layer来管理 2:选中UIROOT下的相机 在clear flag里面设置 ...