方法:动态规划 《算法导论》P208

最优子结构 + 重叠子问题

设xi,yi,为前i个数(前缀)

设c[i,j]为xi,yi的LCS的长度

c[i,j] = 0 (i ==0 || j == 0)

c[i,j] = a[i-1,j-1] + 1 (i,j>0 &&xi=yi)

c[i,j] = max(c[i,j-1],c[i-1,j])

求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两 个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。

【最长公共子序列的结构】

设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>,

则:

1. 若xm=yn,则zk=xm=yn 且Zk-1 是Xm-1 和Yn-1 的最长公共子序列;

2. 若xm≠yn 且zk≠xm ,则Z 是Xm-1 和Y 的最长公共子序列;

3. 若xm≠yn 且zk≠yn ,则Z 是X 和Yn-1 的最长公共子序列。

由此递归结构容易看到最长公共子序列问题具有子问题重叠性质。

由于在所考虑的子问题空间中,总共只有θ(m*n)个不同的 子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。

【编码实现】

输出两个数组c[0..m ,0..n]和b[1..m ,1..n]。其中c[i,j]存储

Xi 与Yj 的最长公共子序列的长度,b[i,j]记录指示c[i,j]的值是由哪一个子问题的解达到的,

这在构造最长公共子序列时要用到。最后,X 和Y 的最长公共子序列的长度记录于c[m,n]

中。

【相似的解决方法:构造矩阵】

import java.util.Random;

public class LCS{

public static void main(String[] args){

int substringLength1 = 20;

int substringLength2 = 20;

String x = GetRandomStrings(substringLength1);

String y = GetRandomStrings(substringLength2);

Long startTime = System.nanoTime();

int[][] opt = new int[substringLength1 + 1][substringLength2 + 1];

for(int i = substringLength1 - 1;i>=0;i--){

for(int j =substring2 -1;j>=0;j--){

if(x.charAt(i) =  y.charAt(j))

opt[i][j] = opt[i+1][j+1] + 1;

else

opt[i][j] = Math.max(opt[i+1][j],opt[i][j+1]);

}

}

System.out.println("substring1:"+x);

System.out.println("substring2:"+y);

System.out.print("LCS:");

int i = 0, j = 0;

while (i < substringLength1 && j < substringLength2){

if (x.charAt(i) == y.charAt(j)){

System.out.print(x.charAt(i));

i++;

j++;

} else if (opt[i + 1][j] >= opt[i][j + 1])

i++;

else

j++;

}

Long endTime = System.nanoTime();

}

}

第11章:最长公共子序列(LCS:Longest Common Subsequence)的更多相关文章

  1. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  2. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  3. 动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)

    分析: 完整代码: // 最长公共子序列 #include <stdio.h> #include <algorithm> using namespace std; ; char ...

  4. (最长公共子序列 暴力) Common Subsequence (poj 1458)

    http://poj.org/problem?id=1458 Description A subsequence of a given sequence is the given sequence w ...

  5. 动态规划——最长公共子序列LCS及模板

    摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...

  6. 1006 最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...

  7. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  8. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  9. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  10. 51Nod 1006:最长公共子序列Lcs(打印LCS)

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. java获取地址全路径

      String basePath = request.getScheme()+"://"+request.getServerName()+":"+reques ...

  2. Windows服务的调试

    1.服务为其他程序调用的情况:首先停止服务,在项目中设置断点,重新启动服务,点击项目中工具,附加到进程,运行调用服务的程序,即可进入之前设置的断点,进而进行调试. 2.服务内方法为自动执行的情况:首先 ...

  3. Visualizing mathematical functions by generating custom meshes using FireMonkey(很美)

    Abstract: This article discusses how you can generate your own 3-dimensional mesh for visualizing ma ...

  4. winrar命令行参数说明

    用法:     rar <命令> -<开关 1> -<开关 N> <压缩文件> <文件...> <@列表文件...> <解 ...

  5. AngularJs使用过程中,在ng-repeat中使用track by

    1.问题描述: 点击删除后:table中的被选中设备确实被删除了,但是data-table并没有重新加载出来, 查看js代码: 先对$scope.data_table进行了destroy(),然后重新 ...

  6. 008-CentOS添加环境变量

    在Linux CentOS系统上安装完php和MySQL后,为了使用方便,需要将php和mysql命令加到系统命令中,如果在没有添加到环境变量之前,执行“php -v”命令查看当前php版本信息时时, ...

  7. asp.net Mvc Npoi 导出导入 excel

    因近期项目遇到所以记录一下: 首先导出Excel : 首先引用NPOI包 http://pan.baidu.com/s/1i3Fosux (Action一定要用FileResult) /// < ...

  8. JSP页面退出时清除会话Session

    我们用一个quit.jsp来处理用户退出系统的操作,quit.jsp负责注销session,及时释放资源. 注销session. 关闭浏览器窗口. 其代码如下所示: <%@ page conte ...

  9. NUnit TestFixtureSetup 和 TestFixtureTearDown

    TestFixtureSetup 和 TestFixtureTearDown 在所有测试开始前(TestFixtureSetup)或结束后(TestFixtureTearDown)运行一 次.记住他只 ...

  10. appium API java

    原创内容,未经允许,禁止转载! driver.close();//关闭 driver.closeApp();//关闭应用,其实就是按home键把应用置于后台 driver.currentActivit ...