Pandas排序
Pandas有两种排序方式,它们分别是 -
- 按标签
- 按实际值
下面来看看一个输出的例子。
import pandas as pd
import numpy as np
unsorted_df=pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],colu
mns=['col2','col1'])
print (unsorted_df)
执行上面示例代码,得到以下结果 -
col2 col1
1 1.069838 0.096230
4 -0.542406 -0.219829
6 -0.071661 0.392091
2 1.399976 -0.472169
3 0.428372 -0.624630
5 0.471875 0.966560
9 -0.131851 -1.254495
8 1.180651 0.199548
0 0.906202 0.418524
7 0.124800 2.011962
在unsorted_df
数据值中,标签和值未排序。下面来看看如何按标签来排序。
按标签排序
使用sort_index()
方法,通过传递axis
参数和排序顺序,可以对DataFrame
进行排序。 默认情况下,按照升序对行标签进行排序。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df=unsorted_df.sort_index()
print (sorted_df)
执行上面示例代码,得到以下结果 -
col2 col1
0 0.431384 -0.401538
1 0.111887 -0.222582
2 -0.166893 -0.237506
3 0.476472 0.508397
4 0.670838 0.406476
5 2.065969 -0.324510
6 -0.441630 1.060425
7 0.735145 0.972447
8 -0.051904 -1.112292
9 0.134108 0.759698
排序顺序
通过将布尔值传递给升序参数,可以控制排序顺序。 来看看下面的例子来理解一下。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df = unsorted_df.sort_index(ascending=False)
print (sorted_df)
执行上面示例代码,得到以下结果 -
col2 col1
9 0.750452 1.754815
8 0.945238 2.079394
7 0.345238 -0.162737
6 -0.512060 0.887094
5 1.163144 0.595402
4 -0.063584 -0.185536
3 -0.275438 -2.286831
2 -1.504792 -1.222394
1 1.031234 -1.848174
0 -0.615083 0.784086
按列排列
通过传递axis
参数值为0
或1
,可以对列标签进行排序。 默认情况下,axis = 0
,逐行排列。来看看下面的例子来理解这个概念。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(np.random.randn(10,2),index=[1,4,6,2,3,5,9,8,0,7],columns = ['col2','col1'])
sorted_df=unsorted_df.sort_index(axis=1)
print (sorted_df)
执行上面示例代码,得到以下结果 -
col1 col2
1 -0.997962 0.736707
4 1.196464 0.703710
6 -0.387800 1.207803
2 1.614043 0.356389
3 -0.057181 -0.551742
5 1.034451 -0.731490
9 -0.564355 0.892203
8 -0.763526 0.684207
0 -1.213615 1.268649
7 0.316543 -1.450784
按值排序
像索引排序一样,sort_values()
是按值排序的方法。它接受一个by
参数,它将使用要与其排序值的DataFrame
的列名称。
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1')
print (sorted_df)
执行上面示例代码,得到以下结果 -
col1 col2
1 1 3
2 1 2
3 1 4
0 2 1
注意: 观察上面的输出结果,
col1
值被排序,相应的col2
值和行索引将随col1
一起改变。因此,它们看起来没有排序。
通过by
参数指定需要列值,参考以下示例代码 -
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by=['col1','col2'])
print (sorted_df)
执行上面示例代码,得到以下结果 -
col1 col2
2 1 2
1 1 3
3 1 4
0 2 1
排序算法
sort_values()
提供了从mergeesort
,heapsort
和quicksort
中选择算法的一个配置。Mergesort
是唯一稳定的算法。参考以下示例代码 -
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame({'col1':[2,1,1,1],'col2':[1,3,2,4]})
sorted_df = unsorted_df.sort_values(by='col1' ,kind='mergesort')
print (sorted_df)
执行上面示例代码,得到以下结果 -
col1 col2
1 1 3
2 1 2
3 1 4
0 2 1
Pandas排序的更多相关文章
- 第七节:pandas排序
pandas具有两种排序方式:sort_index()和sort_values().
- pandas 排序之 sort_values,reindex,reset_index, sort_index
如果想按照自己的方式排序ind = 行索引data= data[ind] ind = data.sum(axis=1).sort_values(ascending=False).index data ...
- pandas 按照某一列进行排序
pandas排序的方法有很多,sort_values表示根据某一列排序 pd.sort_values("xxx",inplace=True) 表示pd按照xxx这个字段排序,inp ...
- Pandas学习笔记(三)
(1)系列对象( Series)基本功能 编号 属性或方法 描述 1 axes 返回行轴标签列表. 2 dtype 返回对象的数据类型(dtype). 3 empty 如果系列为空,则返回True. ...
- 媲美pandas的数据分析工具包Datatable
1 前言 data.table 是 R 中一个非常通用和高性能的包,使用简单.方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Biocondu ...
- pandas的用法
1.a = pandas.read_csv(filepath):读取.csv格式的文件到列表a中,文件在路径filepath中 pandas.core.frame.DataFrame是pandas的核 ...
- 送你一个Python 数据排序的好方法
摘要:学习 Pandas排序方法是开始或练习使用 Python进行基本数据分析的好方法.最常见的数据分析是使用电子表格.SQL或pandas 完成的.使用 Pandas 的一大优点是它可以处理大量数据 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- 【转载】使用Pandas对数据进行筛选和排序
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 ...
随机推荐
- 网站漏洞扫描工具(appscan,mdcsoft-ips)
网站漏洞扫描工具:主要应用网站漏洞扫描工具,其原理是通过工具通过对网站的代码阅读,发现其可被利用的漏洞进行告示,通过前人收集的漏洞编成数据库,根据其扫描对比做出. 具体网站扫描工具有:appscan, ...
- Windows如何使用Apache的ab工具进行网站性能测试(Apache服务器自带了ab压力测试工具,可以用来测试网站性能,使用简单方便)
打开Apache服务器的安装路径,在bin目录中有一个ab.exe的可执行程序,就是我们要介绍的压力测试工具. 在Windows系统的命令行下,进入ab.exe程序所在目录,执行ab.exe程序.注意 ...
- "AppServer"--->UDP--->"LogWriteServer"
w 是否应该将日志的“写”独立至局域网的一台或一群专门服务于“写日志”的服务器?这样让“app服务器”专职地处理用户的请求,而不必因为“写日志甚至异步分析日志”来降低用户体验? Spencer老师 其 ...
- python基础之类的特性(property)
一 什么是特性propertyproperty是一种特殊的属性,访问它时会执行一段功能(函数)然后返回值. import math class Circle: def __init__(self,ra ...
- Piggy-Bank---hdu1114(完全背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题意是有一个存钱罐,当它是空的时候重量为E,满的时候重量为F:已知存钱罐里面有 n 种钱,每种钱 ...
- Js 实现ajax
一.JS实现的ajax 1.AJAX核心(XMLHttpRequest) 其实AJAX就是在Javascript中多添加了一个对象:XMLHttpRequest对象.所有的异步交互都是使用XMLHtt ...
- Acheron一期SVN地址
svn://10.0.0.100/project/Acheron/2.0/SourceCode tailf 命令 http://web2py.com/books/default/chapter/29/ ...
- Oracle 11g数据库详解
常见异常: ORA-14025:不能为实体化视图或实体化视图日志指定PARTITION ORA-14026:PARTITION和CLUSTER子句互相排斥 ORA-14027:仅可以指定一个PARTI ...
- 五分钟学会 Kotlin 语法
为什么使用Kotlin 项目一期在收尾了终于有时间折腾了,一个多月以来Kotlin从入门到现在,坚持用来开发的切身感受.因为语法与Java的区别挺大的一开始很想放弃,如果不是因为项目在使用,想必很少人 ...
- ThreadLocal 示例
ThreadLocal, 从字面意思上看是本地线程. 但实际上它是一个线程本地变量.它的功能就是为每一个使用该变量的线程都提供一个变量值的副本, 从而使得不会与其他线程的副本冲突. 与使用synchr ...