[SRM568]DisjointSemicircles
题意:$2n$个位置排成一列,有一些位置已经填了数字($0\cdots n-1$中每个数字出现$0$次或$2$次),问是否存在一种填数方案使得用$n$个不相交的半圆可以把相同的数字连起来
首先把所有已经填了的数字的半圆画出来,如果两个半圆相交那么它们必须在异侧,在相交的半圆之间连边,如果不是二分图那么就无解
我们用$-1$代表未填数的位置,给$-1$的位置分配$1$代表这个位置向上连线,$0$代表这个位置向下连线
朴素的想法是:对于每个半圆$[l,r]$,枚举它在上方还是在下方,如果在上方,那么$[l,r]$中必须有偶数个$1$,如果在下方,那么$[l,r]$中必须有偶数个$0$(用$-1$的个数减去$0$的个数即可得到$1$的个数),并且因为对于每个不是$-1$的位置$i$,因为不能给它分配$1$,所以$[i,i]$中必须有偶数个$0$,最后,显然所有位置上必须有偶数个$1$
现在问题变为:给定一些区间$[l,r]$和对其中$1$的个数的奇偶性要求,问是否能满足,求异或前缀和后就变成对一些变量的异或值限制,直接dfs一遍看是否冲突即可
但是这样会很慢,考虑优化
如果一个半圆$[l,r]$不与其他半圆相交,当区间长度为偶数时,它放在上或下都要求区间中$1$的个数是偶数,当区间长度为奇数时,放在上或下可以使得区间中$1$的个数是奇数或是偶数,又因为它和其他半圆互不影响,所以我们这样处理:如果区间长度为奇数,不管它,如果区间长度为偶数,那么我们不用枚举它放在上还是下,直接令区间中$1$的个数是偶数即可
所以我们只用对二分图中大小$\geq2$的连通块枚举它的两半分别在上还是下,因为最多有$\frac n2$个半圆,所以最多有$\frac n4$个大小$\geq2$的连通块,所以总时间复杂度为$O(n2^{\frac n4})$
#include<stdio.h> #include<string.h> #include<algorithm> #include<vector> #include<string> using namespace std; struct seg{ int l,r; seg(int a=0,int b=0){l=a;r=b;} }e[30]; bool ints(seg a,seg b){ if(a.l>b.l)swap(a,b); return b.l<a.r&&b.r>a.r; } vector<int>vt[30][2]; vector<int>sg; int cnt; struct graph{ int h[30],nex[610],to[610],M,n; void reset(){ M=0; memset(h,0,sizeof(h)); } void ins(int a,int b){ M++; to[M]=b; nex[M]=h[a]; h[a]=M; } void add(int a,int b){ ins(a,b); ins(b,a); } int c[30]; bool dfs(int x,int f){ if(~c[x])return c[x]==f; vt[cnt][f].push_back(x); c[x]=f; for(int i=h[x];i;i=nex[i]){ if(!dfs(to[i],f^1))return 0; } return 1; } bool gao(int n){ sg.clear(); memset(c,-1,sizeof(c)); cnt=0; for(int i=1;i<=n;i++){ if(c[i]==-1){ if(h[i]){ vt[cnt][0].clear(); vt[cnt][1].clear(); if(!dfs(i,0))return 0; cnt++; }else sg.push_back(i); } } return 1; } }g; struct graph2{ int h[60],nex[210],to[210],v[210],M; void reset(){ M=0; memset(h,0,sizeof(h)); } void ins(int a,int b,int c){ M++; to[M]=b; v[M]=c; nex[M]=h[a]; h[a]=M; } void add(int a,int b,int c){ ins(a,b,c); ins(b,a,c); } int c[60]; bool dfs(int x,int f){ if(~c[x])return c[x]==f; c[x]=f; for(int i=h[x];i;i=nex[i]){ if(!dfs(to[i],f^v[i]))return 0; } return 1; } bool gao(int n){ memset(c,-1,sizeof(c)); for(int i=0;i<=n;i++){ if(c[i]==-1&&!dfs(i,0))return 0; } return 1; } }g2; int a[60],s[60]; class DisjointSemicircles{ public: string getPossibility(vector<int>v){ int n,i,j,M; n=v.size(); M=0; for(i=1;i<=n;i++){ a[i]=v[i-1]; s[i]=s[i-1]+(a[i]==-1); if(~a[i]){ for(j=1;j<i;j++){ if(a[j]==a[i])break; } if(i!=j)e[++M]=seg(j,i); } } g.reset(); for(i=1;i<M;i++){ for(j=i+1;j<=M;j++){ if(ints(e[i],e[j]))g.add(i,j); } } if(!g.gao(M))return"IMPOSSIBLE"; for(i=0;i<1<<cnt;i++){ g2.reset(); for(int x:sg){ if((e[x].r-e[x].l)&1)g2.add(e[x].l-1,e[x].r,0); } for(j=0;j<cnt;j++){ for(int x:vt[j][i>>j&1])g2.add(e[x].l-1,e[x].r,0); for(int x:vt[j][~i>>j&1])g2.add(e[x].l-1,e[x].r,(s[e[x].r]-s[e[x].l-1])&1); } for(j=1;j<=n;j++){ if(~a[j])g2.add(j-1,j,0); } g2.add(0,n,0); if(g2.gao(n))return"POSSIBLE"; } return"IMPOSSIBLE"; } }; /* int main(){ int x; DisjointSemicircles cl; vector<int>v; for(scanf("%d",&x);x!=-2;scanf("%d",&x))v.push_back(x); puts(cl.getPossibility(v).c_str()); } */
[SRM568]DisjointSemicircles的更多相关文章
- Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1
据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...
- TC做题笔记
SRM593 Div1Medium--May The Best Pet Win(bitset优化) Description 给出n个元素取值的max.min,把这n个元素分割成两个集合,求如何分割使两 ...
随机推荐
- es6异步操作
异步编程对 JavaScript 语言太重要.JavaScript 只有一根线程,如果没有异步编程,根本没法用,非卡死不可. ES6 诞生以前,异步编程的方法,大概有下面四种. 回调函数 事件监听 发 ...
- 使用BackgroundWorker
1,WPF应用程序为单线程模型(STAThread),所有UI控件都是主线程创建的,只有主线程能操作UI元素的显示. 2,其他工作线程要维护UI控件的显示,需调用主线程的Dispather,执行Inv ...
- spin lock的理解
为什么在spin lock保护的代码里面不允许有休眠的操作呢? 因为spin lock不是空实现的前提下(内核没关抢占,或者是SMP打开),spin lock中是关抢占的,如果一个进程A拿到锁,内核抢 ...
- memcached和redis区别
Memcached:是高性能分布式内存缓存服务器,本质是一个内存 key-value 数据库,但不支持数据持久化,服务器关闭后,数据全丢失.只支持 key-value 结构. Redis:将大部分数据 ...
- DXEditingRow的错误原因
原因之一:例如commbox理由id这一列但是数据库表中没有的话就会报这个错误
- 【Android开发日记】之基础篇(一)——TextView+SpannableStringBuilder
TextView是控件中最最基础的一个控件,也是最简单的一个控件.但如果仅此,我不会专门为TextView写一篇文章.最近发现了Android中有趣的一个类,那就是标题上写的SpannableStri ...
- 使用js创建select option
var v_select = document.getElementById("selectA"); var v_option = document.createElement( ...
- redis的安装和php的redis扩展
一.redis的安装和配置 1.官方现在源码 https://redis.io/download 2.解压源码 tar zxvf redis-3.2.11.tar.gz 3.编译 make 编译 ...
- mysql大法
mysql大法 MySQL 安装方式 1.rpm(yum) 2.源码包 3.通用二进制 企业中版本选择 5.6 5.7 选择 GA 6个月到1年之间的------------------------- ...
- [PAT] 1146 Topological Order(25 分)
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...