题意:$2n$个位置排成一列,有一些位置已经填了数字($0\cdots n-1$中每个数字出现$0$次或$2$次),问是否存在一种填数方案使得用$n$个不相交的半圆可以把相同的数字连起来

首先把所有已经填了的数字的半圆画出来,如果两个半圆相交那么它们必须在异侧,在相交的半圆之间连边,如果不是二分图那么就无解

我们用$-1$代表未填数的位置,给$-1$的位置分配$1$代表这个位置向上连线,$0$代表这个位置向下连线

朴素的想法是:对于每个半圆$[l,r]$,枚举它在上方还是在下方,如果在上方,那么$[l,r]$中必须有偶数个$1$,如果在下方,那么$[l,r]$中必须有偶数个$0$(用$-1$的个数减去$0$的个数即可得到$1$的个数),并且因为对于每个不是$-1$的位置$i$,因为不能给它分配$1$,所以$[i,i]$中必须有偶数个$0$,最后,显然所有位置上必须有偶数个$1$

现在问题变为:给定一些区间$[l,r]$和对其中$1$的个数的奇偶性要求,问是否能满足,求异或前缀和后就变成对一些变量的异或值限制,直接dfs一遍看是否冲突即可

但是这样会很慢,考虑优化

如果一个半圆$[l,r]$不与其他半圆相交,当区间长度为偶数时,它放在上或下都要求区间中$1$的个数是偶数,当区间长度为奇数时,放在上或下可以使得区间中$1$的个数是奇数或是偶数,又因为它和其他半圆互不影响,所以我们这样处理:如果区间长度为奇数,不管它,如果区间长度为偶数,那么我们不用枚举它放在上还是下,直接令区间中$1$的个数是偶数即可

所以我们只用对二分图中大小$\geq2$的连通块枚举它的两半分别在上还是下,因为最多有$\frac n2$个半圆,所以最多有$\frac n4$个大小$\geq2$的连通块,所以总时间复杂度为$O(n2^{\frac n4})$

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#include<string>
using namespace std;
struct seg{
	int l,r;
	seg(int a=0,int b=0){l=a;r=b;}
}e[30];
bool ints(seg a,seg b){
	if(a.l>b.l)swap(a,b);
	return b.l<a.r&&b.r>a.r;
}
vector<int>vt[30][2];
vector<int>sg;
int cnt;
struct graph{
	int h[30],nex[610],to[610],M,n;
	void reset(){
		M=0;
		memset(h,0,sizeof(h));
	}
	void ins(int a,int b){
		M++;
		to[M]=b;
		nex[M]=h[a];
		h[a]=M;
	}
	void add(int a,int b){
		ins(a,b);
		ins(b,a);
	}
	int c[30];
	bool dfs(int x,int f){
		if(~c[x])return c[x]==f;
		vt[cnt][f].push_back(x);
		c[x]=f;
		for(int i=h[x];i;i=nex[i]){
			if(!dfs(to[i],f^1))return 0;
		}
		return 1;
	}
	bool gao(int n){
		sg.clear();
		memset(c,-1,sizeof(c));
		cnt=0;
		for(int i=1;i<=n;i++){
			if(c[i]==-1){
				if(h[i]){
					vt[cnt][0].clear();
					vt[cnt][1].clear();
					if(!dfs(i,0))return 0;
					cnt++;
				}else
					sg.push_back(i);
			}
		}
		return 1;
	}
}g;
struct graph2{
	int h[60],nex[210],to[210],v[210],M;
	void reset(){
		M=0;
		memset(h,0,sizeof(h));
	}
	void ins(int a,int b,int c){
		M++;
		to[M]=b;
		v[M]=c;
		nex[M]=h[a];
		h[a]=M;
	}
	void add(int a,int b,int c){
		ins(a,b,c);
		ins(b,a,c);
	}
	int c[60];
	bool dfs(int x,int f){
		if(~c[x])return c[x]==f;
		c[x]=f;
		for(int i=h[x];i;i=nex[i]){
			if(!dfs(to[i],f^v[i]))return 0;
		}
		return 1;
	}
	bool gao(int n){
		memset(c,-1,sizeof(c));
		for(int i=0;i<=n;i++){
			if(c[i]==-1&&!dfs(i,0))return 0;
		}
		return 1;
	}
}g2;
int a[60],s[60];
class DisjointSemicircles{
	public:
		string getPossibility(vector<int>v){
			int n,i,j,M;
			n=v.size();
			M=0;
			for(i=1;i<=n;i++){
				a[i]=v[i-1];
				s[i]=s[i-1]+(a[i]==-1);
				if(~a[i]){
					for(j=1;j<i;j++){
						if(a[j]==a[i])break;
					}
					if(i!=j)e[++M]=seg(j,i);
				}
			}
			g.reset();
			for(i=1;i<M;i++){
				for(j=i+1;j<=M;j++){
					if(ints(e[i],e[j]))g.add(i,j);
				}
			}
			if(!g.gao(M))return"IMPOSSIBLE";
			for(i=0;i<1<<cnt;i++){
				g2.reset();
				for(int x:sg){
					if((e[x].r-e[x].l)&1)g2.add(e[x].l-1,e[x].r,0);
				}
				for(j=0;j<cnt;j++){
					for(int x:vt[j][i>>j&1])g2.add(e[x].l-1,e[x].r,0);
					for(int x:vt[j][~i>>j&1])g2.add(e[x].l-1,e[x].r,(s[e[x].r]-s[e[x].l-1])&1);
				}
				for(j=1;j<=n;j++){
					if(~a[j])g2.add(j-1,j,0);
				}
				g2.add(0,n,0);
				if(g2.gao(n))return"POSSIBLE";
			}
			return"IMPOSSIBLE";
		}
};
/*
int main(){
	int x;
	DisjointSemicircles cl;
	vector<int>v;
	for(scanf("%d",&x);x!=-2;scanf("%d",&x))v.push_back(x);
	puts(cl.getPossibility(v).c_str());
}
*/

[SRM568]DisjointSemicircles的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. TC做题笔记

    SRM593 Div1Medium--May The Best Pet Win(bitset优化) Description 给出n个元素取值的max.min,把这n个元素分割成两个集合,求如何分割使两 ...

随机推荐

  1. 密码本(无bug版)

    main.cpp #include <stdio.h> #include <stdlib.h> #include "data.h" #include &qu ...

  2. OSI与TCP/IP各层的结构与功能,都有哪些协议

    前言: 今天更新一下计算机网络的一些非常重要的知识,可能很多人都不知学计算机网络有什么用,我想说的是它真的比较重要,像咱们学校只要是学计算机这个专业都要学习这门课程.另外大家要是去一些像BAT,阿里, ...

  3. java解析XML之DOM解析和SAX解析(包含CDATA的问题)

    Dom解析功能强大,可增删改查,操作时会将XML文档读到内存,因此适用于小文档: SAX解析是从头到尾逐行逐个元素解析,修改较为不便,但适用于只读的大文档:SAX采用事件驱动的方式解析XML.如同在电 ...

  4. Python3 json、pickle序列化与反序列化

    注意:可以dumps多次,loads只能一次,一般我们只dumps一次,loads一次,多个版本就写入多个文件 一.json序列化与反序列化: 支持各种语言数据交互,但只能处理字典,列表,集合等简单的 ...

  5. LeetCode 20 Generate Parentheses

    Given n pairs of parentheses, write a function to generate all combinations of well-formed parenthes ...

  6. 基于Django Form源码开发自定义Form组件

    import copy import re class ValidateError(Exception): def __init__(self, detail): self.detail = deta ...

  7. vue基本介绍

    https://cn.vuejs.org/v2/guide/ Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上 ...

  8. 细数雷军系成员,27家公司3家IPO

    自 2004 年至今,作为天使投资人和顺为基金创始合伙人,雷军共投了移动互联网.电子商务.互联网社区等领域内的 27 家创业公司,其中欢聚时代.猎豹移动.迅雷三家公司成功上市.小米科技虽然还未 IPO ...

  9. C++之参数总结

    函数的形参为函数提供了已命名的局部存储空间,它是在函数的形参表中定义的,并由调用函数时传递给函数的实参初始化,而形参的 初始化与变量的初始化一样,如果形参具有非引用类型,则复制实参的值,如果形参为引用 ...

  10. 64_l1

    L-function-1.23-18.fc26.i686.rpm 13-Feb-2017 23:19 154562 L-function-1.23-18.fc26.x86_64.rpm 13-Feb- ...