[BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意
给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值。
\(n\leq 5\times 10^5\) .
分析
记断掉一条边之后两棵树的直径为 \(A,B\) ,最长直径为 \(A+B+1\) 最短为 \(\max\{A\ ,B\ ,\lceil \frac{A}{2}\rceil+\lceil \frac{B}{2} \rceil +1\}\) .
维护每个点不同子树的前3长链和向上的最长链、不同子树的前2长路径和向上子树的最长路径。
这样枚举断掉一条边之后换根 \(dp\) 一下就可以求得父节点所在树的直径了。
方案可以按照 \(dfs\) 找树的直径的方式构造答案。
总时间复杂度为 \(O(n)\) 。
换根dp可以解决树断一条边以及不同根询问等问题。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define re(x) memset(x,0,sizeof x)
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=5e5 + 7,inf=0x3f3f3f3f;
int n,edc=1,edg1,edg2,ans1=inf,ans2,ban[N<<1];
int f1[N][3],f2[N],g1[N][2],g2[N],fu[N],f[N][4],g[N][3],head[N];
struct edge{
int last,to;
edge(){}edge(int last,int to):last(last),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
e[++edc]=edge(head[b],a),head[b]=edc;
}
bool cmp(int x,int y){return x>y;}
void dfs1(int u,int fa){
go(u)if(v^fa){
dfs1(v,u);
int x=fu[v];
if(x>g1[u][0]) g1[u][1]=g1[u][0],g1[u][0]=x;
else if(x>g1[u][1]) g1[u][1]=x;
x=f1[v][0]+1;
if(x>f1[u][0]) f1[u][2]=f1[u][1],f1[u][1]=f1[u][0],f1[u][0]=x;
else if(x>f1[u][1]) f1[u][2]=f1[u][1],f1[u][1]=x;
else if(x>f1[u][2]) f1[u][2]=x;
}
fu[u]=max(g1[u][0],f1[u][0]+f1[u][1]);
}
void dfs2(int u,int fa){
for(int i=0;i<3;++i) f[u][i]=f1[u][i];f[u][3]=f2[u];sort(f[u],f[u]+4,cmp);
for(int i=0;i<2;++i) g[u][i]=g1[u][i];g[u][2]=g2[u];sort(g[u],g[u]+3,cmp);
go(u)if(v^fa){
int x=0,cnt=0;
for(int j=0,fg=0;j<4;++j){
if(f[u][j]==f1[v][0]+1&&!fg){fg=1;continue;}
x=f[u][j]; break;
}
f2[v]=x+1,x=0;
for(int j=0,fg=0;j<4;++j){
if(f[u][j]==f1[v][0]+1&&!fg) {fg=1;continue;}
x+=f[u][j];if(++cnt==2) break;
}
for(int j=0,fg=0;j<3;++j){
if(g[u][j]==fu[v]&&!fg) {fg=1;continue;}
Max(x,g[u][j]);break;
}
g2[v]=x;
int tmp=max(max(x,fu[v]),(x+1)/2+(fu[v]+1)/2+1);
if(ans1>tmp) ans1=tmp,edg1=i;
tmp=(x+fu[v]+1);
if(ans2<tmp) ans2=tmp,edg2=i;
dfs2(v,u);
}
}
int fa[N],mx,cho,tp,tmp[N];
void dfs(int u,int dis){
if(dis>=mx) mx=dis,cho=u;
go(u)if(v^fa[u]&&!ban[i]) fa[v]=u,dfs(v,dis+1);
}
int main(){
n=gi();
rep(i,1,n-1) Add(gi(),gi());
dfs1(1,0); dfs2(1,0);
printf("%d %d %d",ans1,e[edg1].to,e[edg1^1].to);
ban[edg1]=ban[edg1^1]=1;
int x=e[edg1].to;dfs(x,0);
re(fa),x=cho,mx=0,dfs(x,0);tp=0;for(int i=cho;i;i=fa[i]) tmp[++tp]=i;printf(" %d",tmp[tp+1>>1]);
re(fa),x=e[edg1^1].to,mx=0,dfs(x,0);
re(fa),x=cho,mx=0,dfs(x,0);tp=0;for(int i=cho;i;i=fa[i]) tmp[++tp]=i;printf(" %d\n",tmp[tp+1>>1]);
printf("%d %d %d",ans2,e[edg2].to,e[edg2^1].to);
ban[edg1]=ban[edg1^1]=0,ban[edg2]=ban[edg2^1]=1;
re(fa),x=e[edg2].to,mx=0,dfs(x,0);printf(" %d",cho);
re(fa),x=e[edg2^1].to,mx=0,dfs(x,0);printf(" %d\n",cho);
return 0;
}
[BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]的更多相关文章
- BZOJ4379 : [POI2015]Modernizacja autostrady
两遍树形DP求出每个点开始往上往下走的前3长路以及每个点上下部分的直径. 枚举每条边断开,设两边直径分别为$A,B$,则: 对于第一问,连接两边直径的中点可得直径为$\max(A,B,\lfloor\ ...
- 【BZOJ4379】[POI2015]Modernizacja autostrady 树形DP
[BZOJ4379][POI2015]Modernizacja autostrady Description 给定一棵无根树,边权都是1,请去掉一条边并加上一条新边,定义直径为最远的两个点的距离,请输 ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 模拟赛:树和森林(lct.cpp) (树形DP,换根DP好题)
题面 题解 先解决第一个子问题吧,它才是难点 Subtask_1 我们可以先用一个简单的树形DP处理出每棵树内部的dis和,记为dp0[i], 然后再用一个换根的树形DP处理出每棵树内点 i 到树内每 ...
- Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 小奇的仓库:换根dp
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
随机推荐
- .NET笔试题集(三)
转载于:http://www.cnblogs.com/ForEvErNoME/archive/2012/09/09/2677415.html 1.传入某个属性的set方法的隐含参数的名称是什么? va ...
- gh-ost和pt-osc性能对比
haughty_xiao 基于MySQL row格式的复制现在趋于主流,因此可以使用此格式的binlog来跟踪改变而不是触发器.与percona toolkit的pt-online-schem ...
- UNIX高级环境编程(10)进程控制(Process Control)- 竞态条件,exec函数,解释器文件和system函数
本篇主要介绍一下几个内容: 竞态条件(race condition) exec系函数 解释器文件 1 竞态条件(Race Condition) 竞态条件:当多个进程共同操作一个数据,并且结果依赖 ...
- MySQL运维之---mysqldump备份、select...into outfile、mysql -e 等工具的使用
1.mysqldump备份一个数据库 mysqldump命令备份一个数据库的基本语法: mysqldump -u user -p pwd dbname > Backup.sql 我们来讲解一下备 ...
- 【第一次玩Travis CI】终于弄好了我的马鸭
真是不容易,我都要哭了.熬了半天终于弄完了!! 终于可以坐这儿挺会小曲,写写感受了. 作为一个程序写的不咋滴的程序员,倒是特别喜欢写博客,也是绝了. 高三的时候,用OneNote,后来转到Lofter ...
- python解析式
一.列表解析式 列表解析是外面一对中括号,它返回的是列表. 一般形式为:[expr for item in itratoble] print([i+1 for i in range(10)]) #结果 ...
- [BZOJ 1135][POI2009]Lyz
[BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...
- jQuery 动态加载下拉框选项(Django)
function change_style() { $.ajax({ url: "{% url 'change_style' %}", type: "GET", ...
- C# ActiveX 网页打包验证自动升级
原文地址:http://www.cnblogs.com/yilin/p/csharp-activex.html 注意事项:Win10下需要设置兼容模式,F12仿真切换到IE6-8(版本参考——BT90 ...
- Hello Shader之Hello Trangle
这两天配了一下现代OpenGL的开发环境,同时看了一下基础知识和编程规范 写了一个编译GLSL语言的前端程序和一个Hello trangle的程序 另外,推荐两个资源 1.学习网站Learn Open ...