Description

Solution

由于题目要求,将a[i]->b[i](边权为i)后所得的图应该是由森林和环套树组合而成。

假如是树形结构,所有的t[i]就直接在线段树t[i]点的dfs序(即in[t[i]],out[t[i]]区间)处记录t[i]点的深度。

这样,针对所有的f[i],在线段树上查找所有包含in[f[i]]点的区间所记录的最大深度d。(这个深度就是在离f[i]最近并且已经验证了是真命题的祖先的深度)

然后用倍增算出f[i]向上到深度d,所经过的编号最大值c。ans=min(ans,c)。

原因:ans是指,图中存在a[i]->b[i](1<=i<=ans)时该询问刚好出现矛盾。如果ans-=1,则所有的f[i]都无法到达离它最近的并且已经验证了是真命题的祖先点。

环套树结构:我们把环拆成树

其中Ca->Cb的边权还是a->b边的边权。以此类推其他都是这样。(原本环套树上以a,b,c,d,e为根的树还是以a,b,c,d,e为根)如此,假如说t[i]在环上,我们除了在in[t[i]],out[t[i]]区间记录t[i]点的深度,还要在in[C(t[i])],out[C(t[i])]区间记录C(t[i])点的深度。这样,不论是原本以t[i]为根的子树,还是环上的以其他点为根的树的信息都可以更新完毕。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=2e5+;
int n,_n,m,Q,a,b;
int fa1[N<<],val[N<<],cir[N];
int tag[N];//0-not_visit 1-tag the stack 2-out the stack
int rt[N],cnt; int y[N<<],nxt[N<<],h[N<<],tot;
void link(int _x,int _y){y[++tot]=_y;nxt[tot]=h[_x];h[_x]=tot;}
void build(int u)
{
if (!fa1[u]){rt[++cnt]=u;tag[u]=;return;}
if (tag[fa1[u]]==)
{
int x=u;
for(int t=fa1[x];t!=u;t=fa1[t])
{
cir[t]=++n;val[n]=val[t];link(n,x);
fa1[x]=n;x=fa1[x];
}
cir[u]=++n;link(n,x);rt[++cnt]=n;
tag[u]=;
return;
}
tag[u]=;
if (!tag[fa1[u]]) build(fa1[u]);link(fa1[u],u);
tag[u]=;
}
int dfn,in[N<<],out[N<<],dep[N<<],fa[N<<][],mxe[N<<][];
void dfs(int x)
{
in[x]=++dfn;mxe[x][]=val[x];dep[x]=dep[fa[x][]]+;
for (int i=;i<=;i++)
{
fa[x][i]=fa[fa[x][i-]][i-];
mxe[x][i]=max(mxe[x][i-],mxe[fa[x][i-]][i-]);
}
for (int i=h[x];i;i=nxt[i]) fa[y[i]][]=x,dfs(y[i]);
out[x]=dfn;
}
int cur[N<<],mxd[N<<];
void modify(int k,int l,int r,int askx,int asky,int d)
{
if (askx<=l&&r<=asky){if (Q<cur[k]||mxd[k]<d) cur[k]=Q,mxd[k]=d;return;}
int mid=(l+r)/;
if (askx<=mid) modify(k<<,l,mid,askx,asky,d);
if (asky>mid) modify(k<<|,mid+,r,askx,asky,d);
}
int query(int k,int l,int r,int x)
{
int mid=(l+r)/,re=cur[k]==Q?mxd[k]:;
if (l==r) return re;
if (x<=mid) re=max(re,query(k<<,l,mid,x));else re=max(re,query(k<<|,mid+,r,x));
return re;
}
int t,f,ret,ref;
int main()
{
scanf("%d%d",&n,&m);_n=n;
for (int i=;i<=m;i++) {scanf("%d%d",&a,&b);fa1[b]=a;val[b]=i;}
for (int i=;i<=_n;i++) if (!tag[i]) build(i);
for (int i=;i<=cnt;i++) dfs(rt[i]);
scanf("%d",&Q);
while (Q--)
{
scanf("%d",&ret);
for (int i=;i<=ret;i++)
{
scanf("%d",&t),modify(,,n,in[t],out[t],dep[t]);
if (cir[t]) modify(,,n,in[cir[t]],out[cir[t]],dep[cir[t]]);
}
int ans=m+,d,c;
scanf("%d",&ref);
for (int i=;i<=ref;i++)
{
scanf("%d",&f);
d=query(,,n,in[f]);c=;
if (d==) continue;else d=dep[f]-d;
for(int j=;d;d>>=,j++)
if (d&) c=max(c,mxe[f][j]),f=fa[f][j];
ans=min(ans,c);
}
if (ans==m+) printf("OK\n");else printf("%d\n",ans);
}
}

[2016北京集训测试赛15]statement-[线段树+拆环]的更多相关文章

  1. [2016北京集训测试赛5]小Q与内存-[线段树的神秘操作]

    Description Solution 哇真的异常服气..线段树都可以搞合并和拆分的啊orzorz.神的世界我不懂 Code #include<iostream> #include< ...

  2. 2016北京集训测试赛(十七)Problem C: 数组

    Solution 线段树好题. 我们考虑用last[i]表示\(i\)这个位置的颜色的上一个出现位置. 考虑以一个位置\(R\)为右端点的区间最远能向左延伸到什么位置: \(L = \max_{i \ ...

  3. 2016北京集训测试赛(十六)Problem A: 任务安排

    Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道 ...

  4. 【2016北京集训测试赛(十)】 Azelso (期望DP)

    Time Limit: 1000 ms   Memory Limit: 256 MB Description 题解 状态表示: 这题的状态表示有点难想...... 设$f_i$表示第$i$个事件经过之 ...

  5. 【2016北京集训测试赛(二)】 thr (树形DP)

    Description 题解 (这可是一道很早就碰到的练习题然后我不会做不想做,没想到在Contest碰到欲哭无泪......) 题目大意是寻找三点对的个数,使得其中的三个点两两距离都为d. 问题在于 ...

  6. 【2016北京集训测试赛(八)】 crash的数列 (思考题)

    Description 题解 题目说这是一个具有神奇特性的数列!这句话是非常有用的因为我们发现,如果套着这个数列的定义再从原数列引出一个新数列,它居然还是一样的...... 于是我们就想到了能不能用多 ...

  7. 【2016北京集训测试赛(十六)】 River (最大流)

    Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...

  8. 【2016北京集训测试赛】river

    HINT 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. [吐槽] 嗯..看到这题的想法的话..先想到了每个点的度为2,然后就有点不知所措了 隐隐约约想到了网络流,但并没 ...

  9. 【2016北京集训测试赛】azelso

    [吐槽] 首先当然是要orzyww啦 以及orzyxq奇妙顺推很强qwq 嗯..怎么说呢虽然说之前零零散散做了一些概d的题目但是总感觉好像并没有弄得比较明白啊..(我的妈果然蒟蒻) 这题的话可以说是难 ...

随机推荐

  1. Python+Selenium笔记(十八):持续集成jenkins

    (一)安装xmlrunner 使用Jenkins执行测试时,测试代码中会用到这个模块. pip install xmlrunner (二)安装jenkins (1)   下载jekins https: ...

  2. Python+Selenium笔记(六):元素定位

      (一)  前言 Web应用以及包含超文本标记语言(HTML).层叠样式表(CSS).JS脚本的WEB页面,基于用户的操作(例如点击提交按钮),浏览器向WEB服务器发送请求,WEB服务器响应请求,返 ...

  3. tomcat报错this web application instance has been stopped already问题

    上网搜了下,大部分的报错原因:重启时候 之前的tomcat未正常关闭 ,导致在重启时候 报了这个问题.mac下解决: ps -ef|grep tomcat 找到在进行的tomcat ,kill -9  ...

  4. SpringMVC_JDBC

    链接:https://pan.baidu.com/s/1a8Aht1eIeRYGb78X9v3ubA 密码:h2zy 未完,待续...

  5. android打开存储卡(TF卡\SD卡)中的sqlite文件

    android的SDK直接支持sqlite3的API.   打开SD卡上面的sqlite数据库,不需要SQLiteOpenHelper的继承类.只需要,SQLiteDatabase中的一些静态方法.如 ...

  6. python的学习之路day5

    大纲: 1.双层装饰器 单层装饰器 双层装饰器 原理 2.字符串的格式化 3.format字符串格式化 4.生成器 5.递归 6.模块的安装 7.json模块 8.pickle模块 9.time模块 ...

  7. glViewport()函数和glOrtho()函数的理解(转)

    http://www.cnblogs.com/yxnchinahlj/archive/2010/10/30/1865298.html 在OpenGL中有两个比较重要的投影变换函数,glViewport ...

  8. iOS资源大全中文版

    我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-ios 就是 vsouza 发起维护的 iOS 资源列表,内容包括:框架.组件.测试.App ...

  9. Python第一篇-简介和入门

    简介: Python[1]  (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第 ...

  10. AtCoder Regular Contest

    一句话题解 因为上篇AGC的写的有点长……估计这篇也短不了所以放个一句话题解方便查阅啥的吧QwQ 具体的题意代码题解还是往下翻…… ARC 058 D:简单容斥计数. E:用二进制表示放的数字,然后状 ...