题解

如果一个联通块是一个树的话,方案数就一种,如果这个联通块还有别的边,那选了一条别的边就会把树上对应路径全部取反,所以方案数是\(2^{m - n + 1}\)

如果联通块数为\(c\)方案数为\(2^{m - m + c}\)

一个联通块有奇数个黑点一定为0

然后就对于每个点判断是不是割点,是的话看看分成的联通块有几个包含奇数个黑点

然后如果不是割点看看删掉这个点后联通块黑点个数的奇偶性改没改变

同时要特判联通块里只有一个点的情况

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define MAXN 100005
#define mo 974711
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,M,pw[200005];
char s[MAXN];
struct node {
int to,next;
}E[MAXN * 2];
int head[MAXN],sumE,conn,deg[MAXN],rec[MAXN],incodd[MAXN],incconn[MAXN];
int dfn[MAXN],low[MAXN],idx,sta[MAXN],top,siz[MAXN],black,odd;
bool cut[MAXN],vis[MAXN],acs[MAXN];
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void Tarjan(int u,int fa) {
int son = 0;
low[u] = dfn[u] = ++idx;
sta[++top] = u;
siz[u] = (s[u] == '1');
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa) {
if(dfn[v]) low[u] = min(low[u],dfn[v]);
else {
Tarjan(v,u);
if(low[v] >= dfn[u]) {
++son;
if(fa) cut[u] = 1;
int t = 0;
while(1) {
int x = sta[top--];
t += siz[x];
if(x == v) break;
}
incodd[u] += (t & 1);
incconn[u]++;
siz[u] += t;
}
low[u] = min(low[v],low[u]);
}
}
}
if(!fa && son > 1) cut[u] = 1;
if(cut[u]) {
if(fa) incconn[u]++;
incodd[u] += (black - siz[u] & 1);
if(odd - (black & 1) + incodd[u] == 0) acs[u] = 1;
}
else {
if(odd - (black & 1) + (black - (s[u] == '1') & 1) == 0) acs[u] = 1; }
}
void dfs(int u) {
vis[u] = 1;
if(s[u] == '1') ++black;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v]) dfs(v);
}
}
void Init() {
read(N);read(M);
memset(head,0,sizeof(head));sumE = 0;
memset(deg,0,sizeof(deg));
idx = 0;top = 0;conn = 0;
memset(dfn,0,sizeof(dfn));memset(low,0,sizeof(low));
memset(siz,0,sizeof(siz));
memset(cut,0,sizeof(cut));memset(vis,0,sizeof(vis));
memset(acs,0,sizeof(acs));
memset(incodd,0,sizeof(incodd));memset(incconn,0,sizeof(incconn));
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
add(u,v);add(v,u);
deg[u]++;deg[v]++;
}
scanf("%s",s + 1);
odd = 0;
for(int i = 1 ; i <= N ; ++i) {
if(!vis[i]) {
black = 0;
++conn;
dfs(i);
rec[i] = black;
if(black & 1)++odd;
}
}
}
void Solve() {
if(odd >= 2) {
for(int i = 1 ; i <= N + 1 ; ++i) {out(0);space;}
return;
}
for(int i = 1 ; i <= N ; ++i) {
if(!dfn[i]) {
top = 0;idx = 0;
black = rec[i];
Tarjan(i,0);
if(!deg[i]) cut[i] = 1;
}
}
if(odd == 0) {
out(pw[M - N + conn]);space;
}
else {
out(0);space;
}
for(int i = 1 ; i <= N ; ++i) {
if(!acs[i]) out(0);
else if(cut[i]) {
out(pw[(M - deg[i]) - (N - 1) - 1 + conn + incconn[i]]);
}
else {
out(pw[(M - deg[i]) - (N - 1) + conn]);
}
space;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
pw[0] = 1;
for(int i = 1 ; i <= 200000; ++i) {
pw[i] = mul(pw[i - 1],2);
}
int T;
read(T);
while(T--) {Init();Solve();enter;}
}

【LOJ】#2524. 「HAOI2018」反色游戏的更多相关文章

  1. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  2. loj#2269. 「SDOI2017」切树游戏

    还是loj的机子快啊... 普通的DP不难想到,设F[i][zt]为带上根玩出zt的方案数,G[i][zt]为子树中的方案数,后面是可以用FWT优化的 主要是复习了下动态DP #include< ...

  3. LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积

    题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...

  4. loj#6436. 「PKUSC2018」神仙的游戏(生成函数)

    题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...

  5. LOJ #6436. 「PKUSC2018」神仙的游戏

    题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...

  6. loj#6436. 「PKUSC2018」神仙的游戏(NTT)

    题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...

  7. 【loj#2524】【bzoj5303】 [Haoi2018]反色游戏(圆方树)

    题目传送门:loj bzoj 题意中的游戏方案可以转化为一个异或方程组的解,将边作为变量,点作为方程,因此若方程有解,方程的解的方案数就是2的自由元个数次方.我们观察一下方程,就可以发现自由元数量=边 ...

  8. 【BZOJ5303】[HAOI2018]反色游戏(Tarjan,线性基)

    [BZOJ5303][HAOI2018]反色游戏(Tarjan,线性基) 题面 BZOJ 洛谷 题解 把所有点全部看成一个\(01\)串,那么每次选择一条边意味着在这个\(01\)串的基础上异或上一个 ...

  9. bzoj 5393 [HAOI2018] 反色游戏

    bzoj 5393 [HAOI2018] 反色游戏 Link Solution 最简单的性质:如果一个连通块黑点个数是奇数个,那么就是零(每次只能改变 \(0/2\) 个黑点) 所以我们只考虑偶数个黑 ...

随机推荐

  1. hihoCoder 1632 Secret Poems(ACM-ICPC北京赛区2017网络同步赛)

    时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 The Yongzheng Emperor (13 December 1678 – 8 October 1735), was ...

  2. C++实用整数快速输入输出模板(C++)

    随便写一点放在这里,以后想蛇皮卡常就很方便啦 蒟蒻太懒了,也就暂时不搞什么封namespace之类的操作了 程序结束时记得flush一下. #include<cstdio> #define ...

  3. Java线程总结---第一天

    线程和进程各自有什么区别和优劣: 进程是资源分配的最小单位,线程是程序执行的最小单位 进程有自己的独立地址空间,每启动一个进程,系统就会为它分配地址空间,建立数据表来维护代码段.堆栈段和数据段,这种操 ...

  4. [八省联考2018]林克卡特树lct——WQS二分

    [八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...

  5. SqlParameter类——带参数的SQL语句

    http://blog.csdn.net/woshixuye/article/details/7218770 SqlParameter 类 表示 SqlCommand 的参数,也可以是它到 DataS ...

  6. Object类型的怎么判断空值

    例如 Object result; 我直接这样是不行的 if(result==null) //这样是错的 ... 要这样判断 if(result == System.DBNull.Value) //这 ...

  7. AngularJs分层结构小demo

    后端mvc分层,前端也要分层才对嘛.分层的好处不言而喻.简直太清晰,容易维护.反正清爽的一逼.不信你看. 思路:分为controller层和service层.controller层再提取一个公共的层. ...

  8. 如何把手机app的视频下载到手机上?网页上的视频怎么下载?

    手机上小视频怎么下载?求推荐不需要安装软件的下载方法? 如何把手机app的视频下载到手机上?比如把快手上的视频下载到手机上? 如何免费下载视频? ... 答案当然是用iiiLab提供的在线视频解析下载 ...

  9. POJ 3710 无向图简单环树上删边

    结论题,这题关键在于如何转换环,可以用tarjan求出连通分量后再进行标记,也可以DFS直接找到环后把点的SG值变掉就行了 /** @Date : 2017-10-23 19:47:47 * @Fil ...

  10. 给定一个整数,求解该整数最少能用多少个Fib数字相加得到

    一,问题描述 给定一个整数N,求解该整数最少能用多少个Fib数字相加得到 Fib数列,就是如: 1,1,2,3,5,8,13.... Fib数列,满足条件:Fib(n)=Fib(n-1)+Fib(n- ...