奇怪吸引子---Chua
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors
这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
g=e*i + (d + e)*(abs(x+)-abs(x-))
u=a*(j - i - g)
v=b*(i - j + k)
w=-c*j
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=15.600000
b=1.000000
c=25.580000
d=-1.000000
e=0.000000
i=1.000000
j=1.000000
k=1.000000
t=0.000010
x=1.000000
混沌图像:
奇怪吸引子---Chua的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- 005.LVM删除
一 删除LVM步骤 卸载挂载点 移除LV 移除VG 移除PV 删除配置文件 二 卸载挂载点 [root@kauai ~]# umount /dev/vg01/lv01 #先卸载挂载点 三 移除LV [ ...
- 关于ImportError: libssl.so.10: cannot open shared object file: No such file or directory unable to load app 0 (mountpoint='') (callable not found or import error)
一.问题描述 在亚马逊云服务器使用Nginx+uwsgi部署django项目时,项目可以使用python manage.py runserver正常运行,uwsgi测试也没问题,Nginx也正常启动, ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- j.u.c系列(07)---之读写锁:ReentrantReadWriteLock
写在前面 重入锁ReentrantLock是排他锁,排他锁在同一时刻仅有一个线程可以进行访问,但是在大多数场景下,大部分时间都是提供读服务,而写服务占有的时间较少.然而读服务不存在数据竞争问题,如果一 ...
- 強大的jQuery Chart组件-Highcharts
Highcharts是一个制作图表的纯Javascript类库,主要特性如下: 兼容性:兼容当今所有的浏览器,包括iPhone.IE和火狐等等: 对个人用户完全免费: 纯JS,无BS: 支持大部分的图 ...
- LDO current regulator for power LED
LDO current regulator for power LED Challenge You've got a power LED? Great! Build a flash light! Wh ...
- Calculate CAN bit timing parameters
Calculate CAN bit timing parameters TSYNC_SEG === 1 TSEG1 = Prop_Seg + Phase_Seg1 TSEG2 = Phase_Seg2 ...
- ThinkPHP 模型方法 setInc() 和 setDec() 使用详解
对于数字字段的加减,可以直接使用 setInc() 与 setDec() 方法 ThinkPHP 内置了对统计数据(数字字段)的更新方法: setInc():将数字字段值增加 setDec():将数字 ...
- Programming 2D Games 读书笔记(第四章)
示例一:Game Engine Part 1 更加完善游戏的基本流程 Graphics添加了以下几个方法,beginScene和endScene提高绘图,showBackbuffer去掉了clea ...
- 我是该学JAVA呢,还是学IOS开发呢?
摘要: iOS就像Andriod一样,不是编程语言,而是操作系统.学iOS开发,其实学的是如何用Objective-C在苹果操作系统上进行各种应用程序的开发.就像学Andriod开发,其实是学如何用J ...