Beans Game


Time Limit: 5 Seconds Memory Limit: 32768 KB

There are three piles of beans. TT and DD pick any number of beans from any pile or the same number from any two piles by turns. Who get the last bean will win. TT and DD are very clever.

Input

Each test case contains of a single line containing 3 integers a b c, indicating the numbers of beans of these piles. It is assumed that 0 <= a,b,c <= 300 and a + b + c > 0.

Output

For each test case, output 1 if TT will win, ouput 0 if DD will win.

Sample Input

1 0 0
1 1 1
2 3 6

Sample Output

1
0
0 博弈题;相对于取石子游戏那题多了一堆;(但,有一点不一样,就是范围!那么就简单多了)
题目大意:有三堆豆子a,b,c(a+b+c<=300)。TT和DD轮流从其中一堆拿走任意个豆子或从其中的两种拿走同样多的豆子,最后一个拿完的获胜。
算法分析:

典型的威佐夫博弈问题是两堆,而此题为三堆。

原本以为这题是要找规律,但是找了一个小时没找到。百度解题报告,发现原来只要逆向推即可。采用递推比较快。

p[i][j][k] = 0表示状态为i,j,k时是必败态,p[i][j][k] = 1为必胜态。

从必败态往上推,能从必败态推出来的就是必胜态,赋值为1,如果是必胜点就不用往上推了。

p[i][j][k]初始化为必败点,如果该点不能从必败点转移过来,该点就是必败点。

由于必败点比较少所以可以节省时间。

#include<stdio.h>
#include<string.h> bool vis[][][]; void fun()
{
int i,j,k;
for(i=;i<=;i++)
{
for(j=;j<=;j++)
{
for(k=;k<=;k++)
{
if(vis[i][j][k]==)
{
int p;
for(p=i+;p<=;p++)
vis[p][j][k]=;
for(p=j+;p<=;p++)
vis[i][p][k]=;
for(p=k+;p<=;p++)
vis[i][j][p]=;
for(p=;p+i<=&&p+j<=;p++)
vis[p+i][p+j][k]=;
for(p=;p+j<=&&p+k<=;p++)
vis[i][p+j][p+k]=;
for(p=;p+i<=&&p+k<=;p++)
vis[p+i][j][p+k]=;
}
}
}
}
} int main()
{
int a,b,c;
memset(vis,,sizeof(vis));
fun();
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
printf("%d\n",vis[a][b][c]);
}
return ;
}

dp的做法正在补充。。。

Beans Game(博弈 | | DP)zoj 3057的更多相关文章

  1. HDU 5623 KK's Number (博弈DP)

    KK's Number 题目链接: http://acm.hust.edu.cn/vjudge/contest/121332#problem/K Description Our lovely KK h ...

  2. 博弈dp 以I Love this Game! POJ - 1678 为例

    写在前面的话 知识基础:一些基础的博弈论的方法,动态规划的一些知识 前言:博弈论就是一些关于策略或者游戏之间的最优解,动态规划就是对于一些状态之间转移的一些递推式(or 递归),dp分为很多很多种,比 ...

  3. 博弈dp入门 POJ - 1678 HDU - 4597

    本来博弈还没怎么搞懂,又和dp搞上了,哇,这真是冰火两重天,爽哉妙哉. 我自己的理解就是,博弈dp有点像对抗搜索的意思,但并不是对抗搜索,因为它是像博弈一样,大多数以当前的操作者来dp,光想是想不通的 ...

  4. 博弈---ZOJ 3057 Beans Game(DP博弈)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3057 有豆类三个桩.TT和DD挑选任意数量的豆子从任何两堆轮流任何桩或相同 ...

  5. ZOJ - 3057 D - Beans Game(三堆威佐夫博弈)

    Beans Game Time Limit: 5 Seconds Memory Limit: 32768 KB There are three piles of beans. TT and DD pi ...

  6. zoj 3057 Beans Game 博弈论

    思路:三维DP,刚开始用记忆化搜索,MLE…… 后来改为直接预处理所有的情况. 总之就是必败态的后继是必胜态!!! 代码如下: #include<iostream> #include< ...

  7. zoj 3057 博弈

    思路:对于TT来说,如果数量分别为a a b或 a b a,或 b a a的形式,那么TT必赢,因为TT可以使其成为 a a a的形式,那么不论DD 怎么拿,都是TT最后使其成为a a a 的形式,0 ...

  8. ZOJ 3057 Beans Game 博弈论 sg函数

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3057 典型的sg函数,数据范围卡得真好啊 代码 #include<c ...

  9. DP ZOJ 3872 Beauty of Array

    题目传送门 /* DP:dp 表示当前输入的x前的包含x的子序列的和, 求和方法是找到之前出现x的位置(a[x])的区间内的子序列: sum 表示当前输入x前的所有和: a[x] 表示id: 详细解释 ...

随机推荐

  1. ASP.NET MVC基础知识

    1.MVC项目文件夹说明 App_Data:用来保存数据文件,比如XML文件等: App_Start:包含mvc系统启动的相关类: Controller:存放整个项目“控制器”的代码文件: Model ...

  2. .gitignore文件常用写法

    一般的项目代码中会涉及到密码.key/secret等隐私内容,不适合上传github公开.这时可以使用.gitignore文件来屏蔽这些文件的提交. 你可能用到的写法如下 写法 含义 /build/ ...

  3. 01_python_初始python

    一.初始python python是一门解释型语言,弱类型语言 / python解释器最为常用的是cpython(官方) 弱类型语言:   a = 1 a = 'alex'   #说明变量a既可以是整 ...

  4. nginx官方文档 之 http负载均衡 学习笔记

    一.负载均衡 算法 大致可以分两类: (1)不能保证用户的每一次请求都通过负载均衡到达同一服务器. (2)可保证用户的每一次请求都通过负载均衡到达同一服务器. 第二类的应用场景: 1.如果服务器有缓存 ...

  5. html-文件上传设置accept类型延时问题

       今天在做文件上传时,采用了jQuery的upload插件,使用过程中发现了一个很有意思也很头疼的问题. 上传按钮,第一次点击时瞬间就可以打开文件选择框,之后再点击则需要等待恐怖的8s以上. 百度 ...

  6. nodejs&mongo&angularjs

    http://www.ibm.com/developerworks/cn/web/wa-nodejs-polling-app/

  7. odoo开发笔记--自定义server action页面跳转注意

    场景描述: 在添加自定义服务器动作 “复制全部”后发现直接创建了新的记录,并且直接进入到form保存完的状态. 如何解决: if yourself_obj_copy: return { 'type': ...

  8. (转)Python开发程序:支持多用户在线的FTP程序

    原文链接:http://www.itnose.net/detail/6642756.html 作业:开发一个支持多用户在线的FTP程序 要求: 用户加密认证 允许同时多用户登录 每个用户有自己的家目录 ...

  9. 监督学习——AdaBoost元算法提高分类性能

    基于数据的多重抽样的分类器 可以将不通的分类器组合起来,这种组合结果被称为集成方法(ensemble method)或者元算法(meta-algorithom) bagging : 基于数据随机抽样的 ...

  10. ActiveMQ配置高可用性的方式

    当一个应用被部署于生产环境,灾备计划是非常重要的,以便从网络故障,硬件故障,软件故障或者电源故障中恢复.通过合理的配置ActiveMQ,可以解决上诉问题.最典型的配置方法是运行多个Broker,一旦某 ...