转载自:https://my.oschina.net/hosee/blog/607677
摘要: 本系列基于炼数成金课程,为了更好的学习,做了系列的记录。 本文主要介绍: 1.各种同步控制工具的使用 2.并发容器及典型源码分析

[高并发Java 二] 多线程基础中,我们已经初步提到了基本的线程同步操作。这次要提到的是在并发包中的同步控制工具。

1. 各种同步控制工具的使用

1.1 ReentrantLock

ReentrantLock感觉上是synchronized的增强版,synchronized的特点是使用简单,一切交给JVM去处理,但是功能上是比较薄弱的。在JDK1.5之前,ReentrantLock的性能要好于synchronized,由于对JVM进行了优化,现在的JDK版本中,两者性能是不相上下的。如果是简单的实现,不要刻意去使用ReentrantLock。

相比于synchronized,ReentrantLock在功能上更加丰富,它具有可重入、可中断、可限时、公平锁等特点。

首先我们通过一个例子来说明ReentrantLock最初步的用法:

package test;

import java.util.concurrent.locks.ReentrantLock;

public class Test implements Runnable
{
public static ReentrantLock lock = new ReentrantLock();
public static int i = 0; @Override
public void run()
{
for (int j = 0; j < 10000000; j++)
{
lock.lock();
try
{
i++;
}
finally
{
lock.unlock();
}
}
} public static void main(String[] args) throws InterruptedException
{
Test test = new Test();
Thread t1 = new Thread(test);
Thread t2 = new Thread(test);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println(i);
} }

有两个线程都对i进行++操作,为了保证线程安全,使用了 ReentrantLock,从用法上可以看出,与 synchronized相比, ReentrantLock就稍微复杂一点。因为必须在finally中进行解锁操作,如果不在 finally解锁,有可能代码出现异常锁没被释放,而synchronized是由JVM来释放锁。

那么ReentrantLock到底有哪些优秀的特点呢?

1.1.1 可重入

单线程可以重复进入,但要重复退出

lock.lock();
lock.lock();
try
{
i++; }
finally
{
lock.unlock();
lock.unlock();
}

由于ReentrantLock是重入锁,所以可以反复得到相同的一把锁,它有一个与锁相关的获取计数器,如果拥有锁的某个线程再次得到锁,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放(重入锁)。这模仿了 synchronized 的语义;如果线程进入由线程已经拥有的监控器保护的 synchronized 块,就允许线程继续进行,当线程退出第二个(或者后续) synchronized 块的时候,不释放锁,只有线程退出它进入的监控器保护的第一个synchronized 块时,才释放锁。

public class Child extends Father implements Runnable{
final static Child child = new Child();//为了保证锁唯一
public static void main(String[] args) {
for (int i = 0; i < 50; i++) {
new Thread(child).start();
}
} public synchronized void doSomething() {
System.out.println("1child.doSomething()");
doAnotherThing(); // 调用自己类中其他的synchronized方法
} private synchronized void doAnotherThing() {
super.doSomething(); // 调用父类的synchronized方法
System.out.println("3child.doAnotherThing()");
} @Override
public void run() {
child.doSomething();
}
}
class Father {
public synchronized void doSomething() {
System.out.println("2father.doSomething()");
}
}

我们可以看到一个线程进入不同的 synchronized方法,是不会释放之前得到的锁的。所以输出还是顺序输出。所以synchronized也是重入锁

输出:

1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
...

1.1.2.可中断

与synchronized不同的是,ReentrantLock对中断是有响应的。中断相关知识查看[高并发Java 二] 多线程基础

普通的lock.lock()是不能响应中断的,lock.lockInterruptibly()能够响应中断。

我们模拟出一个死锁现场,然后用中断来处理死锁

package test;

import java.lang.management.ManagementFactory;
import java.lang.management.ThreadInfo;
import java.lang.management.ThreadMXBean;
import java.util.concurrent.locks.ReentrantLock; public class Test implements Runnable
{
public static ReentrantLock lock1 = new ReentrantLock();
public static ReentrantLock lock2 = new ReentrantLock(); int lock; public Test(int lock)
{
this.lock = lock;
} @Override
public void run()
{
try
{
if (lock == 1)
{
lock1.lockInterruptibly();
try
{
Thread.sleep(500);
}
catch (Exception e)
{
// TODO: handle exception
}
lock2.lockInterruptibly();
}
else
{
lock2.lockInterruptibly();
try
{
Thread.sleep(500);
}
catch (Exception e)
{
// TODO: handle exception
}
lock1.lockInterruptibly();
}
}
catch (Exception e)
{
// TODO: handle exception
}
finally
{
if (lock1.isHeldByCurrentThread())
{
lock1.unlock();
}
if (lock2.isHeldByCurrentThread())
{
lock2.unlock();
}
System.out.println(Thread.currentThread().getId() + ":线程退出");
}
} public static void main(String[] args) throws InterruptedException
{
Test t1 = new Test(1);
Test t2 = new Test(2);
Thread thread1 = new Thread(t1);
Thread thread2 = new Thread(t2);
thread1.start();
thread2.start();
Thread.sleep(1000);
//DeadlockChecker.check();
} static class DeadlockChecker
{
private final static ThreadMXBean mbean = ManagementFactory
.getThreadMXBean();
final static Runnable deadlockChecker = new Runnable()
{
@Override
public void run()
{
// TODO Auto-generated method stub
while (true)
{
long[] deadlockedThreadIds = mbean.findDeadlockedThreads();
if (deadlockedThreadIds != null)
{
ThreadInfo[] threadInfos = mbean.getThreadInfo(deadlockedThreadIds);
for (Thread t : Thread.getAllStackTraces().keySet())
{
for (int i = 0; i < threadInfos.length; i++)
{
if(t.getId() == threadInfos[i].getThreadId())
{
t.interrupt();
}
}
}
}
try
{
Thread.sleep(5000);
}
catch (Exception e)
{
// TODO: handle exception
}
} }
}; public static void check()
{
Thread t = new Thread(deadlockChecker);
t.setDaemon(true);
t.start();
}
} }

上述代码有可能会发生死锁,线程1得到lock1,线程2得到lock2,然后彼此又想获得对方的锁。

我们用jstack查看运行上述代码后的情况

的确发现了一个死锁。

DeadlockChecker.check();方法用来检测死锁,然后把死锁的线程中断。中断后,线程正常退出。

1.1.3.可限时

超时不能获得锁,就返回false,不会永久等待构成死锁

使用lock.tryLock(long timeout, TimeUnit unit)来实现可限时锁,参数为时间和单位。

举个例子来说明下可限时:

package test;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock; public class Test implements Runnable
{
public static ReentrantLock lock = new ReentrantLock(); @Override
public void run()
{
try
{
if (lock.tryLock(5, TimeUnit.SECONDS))
{
Thread.sleep(6000);
}
else
{
System.out.println("get lock failed");
}
}
catch (Exception e)
{
}
finally
{
if (lock.isHeldByCurrentThread())
{
lock.unlock();
}
}
} public static void main(String[] args)
{
Test t = new Test();
Thread t1 = new Thread(t);
Thread t2 = new Thread(t);
t1.start();
t2.start();
} }

使用两个线程来争夺一把锁,当某个线程获得锁后,sleep6秒,每个线程都只尝试5秒去获得锁。

所以必定有一个线程无法获得锁。无法获得后就直接退出了。

输出:

get lock failed

1.1.4.公平锁

使用方式:

public ReentrantLock(boolean fair) 

public static ReentrantLock fairLock = new ReentrantLock(true);

一般意义上的锁是不公平的,不一定先来的线程能先得到锁,后来的线程就后得到锁。不公平的锁可能会产生饥饿现象。

公平锁的意思就是,这个锁能保证线程是先来的先得到锁。虽然公平锁不会产生饥饿现象,但是公平锁的性能会比非公平锁差很多。

1.2 Condition

Condition与ReentrantLock的关系就类似于synchronized与Object.wait()/notify()

Condition的await()方法会使当前线程等待,同时释放当前锁,当其他线程中使用signal()时或者signalAll()方法时,线 程会重新获得锁并继续执行。或者当线程被中断时,也能跳出等待。这和Object.wait()方法很相似。

awaitUninterruptibly()方法与await()方法基本相同,但是它并不会再等待过程中响应中断。
singal()方法用于唤醒一个在等待中的线程。相对的singalAll()方法会唤醒所有在等待中的线程。这和Obejct.notify()方法很类似。

这里就不再详细介绍了。举个例子来说明:

package test;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; public class Test implements Runnable
{
public static ReentrantLock lock = new ReentrantLock();
public static Condition condition = lock.newCondition(); @Override
public void run()
{
try
{
lock.lock();
condition.await();
System.out.println("Thread is going on");
}
catch (Exception e)
{
e.printStackTrace();
}
finally
{
lock.unlock();
}
} public static void main(String[] args) throws InterruptedException
{
Test t = new Test();
Thread thread = new Thread(t);
thread.start();
Thread.sleep(2000); lock.lock();
condition.signal();
lock.unlock();
} }

上述例子很简单,让一个线程await住,让主线程去唤醒它。condition.await()/signal只能在得到锁以后使用。

1.3.Semaphore

对于锁来说,它是互斥的排他的。意思就是,只要我获得了锁,没人能再获得了。

而对于Semaphore来说,它允许多个线程同时进入临界区。可以认为它是一个共享锁,但是共享的额度是有限制的,额度用完了,其他没有拿到额度的线程还是要阻塞在临界区外。当额度为1时,就相等于lock

下面举个例子:

package test;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore; public class Test implements Runnable
{
final Semaphore semaphore = new Semaphore(5);
@Override
public void run()
{
try
{
semaphore.acquire();
Thread.sleep(2000);
System.out.println(Thread.currentThread().getId() + " done");
}
catch (Exception e)
{
e.printStackTrace();
}finally {
semaphore.release();
}
} public static void main(String[] args) throws InterruptedException
{
ExecutorService executorService = Executors.newFixedThreadPool(20);
final Test t = new Test();
for (int i = 0; i < 20; i++)
{
executorService.submit(t);
}
} }
 

有一个20个线程的线程池,每个线程都去 Semaphore的许可,Semaphore的许可只有5个,运行后可以看到,5个一批,一批一批地输出。

当然一个线程也可以一次申请多个许可

public void acquire(int permits) throws InterruptedException

1.4 ReadWriteLock

ReadWriteLock是区分功能的锁。读和写是两种不同的功能,读-读不互斥,读-写互斥,写-写互斥。

这样的设计是并发量提高了,又保证了数据安全。

使用方式:

private static ReentrantReadWriteLock readWriteLock=new ReentrantReadWriteLock();
private static Lock readLock = readWriteLock.readLock();
private static Lock writeLock = readWriteLock.writeLock();

详细例子可以查看 Java实现生产者消费者问题与读者写者问题,这里就不展开了。

1.5 CountDownLatch

倒数计时器
一种典型的场景就是火箭发射。在火箭发射前,为了保证万无一失,往往还要进行各项设备、仪器的检查。 只有等所有检查完毕后,引擎才能点火。这种场景就非常适合使用CountDownLatch。它可以使得点火线程
,等待所有检查线程全部完工后,再执行

使用方式:

static final CountDownLatch end = new CountDownLatch(10);
end.countDown();
end.await();

示意图:

一个简单的例子:

package test;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class Test implements Runnable
{
static final CountDownLatch countDownLatch = new CountDownLatch(10);
static final Test t = new Test();
@Override
public void run()
{
try
{
Thread.sleep(2000);
System.out.println("complete");
countDownLatch.countDown();
}
catch (Exception e)
{
e.printStackTrace();
}
} public static void main(String[] args) throws InterruptedException
{
ExecutorService executorService = Executors.newFixedThreadPool(10);
for (int i = 0; i < 10; i++)
{
executorService.execute(t);
}
countDownLatch.await();
System.out.println("end");
executorService.shutdown();
} }

主线程必须等待10个线程全部执行完才会输出"end"。

1.6 CyclicBarrier

和CountDownLatch相似,也是等待某些线程都做完以后再执行。与CountDownLatch区别在于这个计数器可以反复使用。比如,假设我们将计数器设置为10。那么凑齐第一批1 0个线程后,计数器就会归零,然后接着凑齐下一批10个线程

使用方式:

public CyclicBarrier(int parties, Runnable barrierAction) 

barrierAction就是当计数器一次计数完成后,系统会执行的动作

await()

示意图:

下面举个例子:

package test;

import java.util.concurrent.CyclicBarrier;

public class Test implements Runnable
{
private String soldier;
private final CyclicBarrier cyclic; public Test(String soldier, CyclicBarrier cyclic)
{
this.soldier = soldier;
this.cyclic = cyclic;
} @Override
public void run()
{
try
{
//等待所有士兵到齐
cyclic.await();
dowork();
//等待所有士兵完成工作
cyclic.await();
}
catch (Exception e)
{
// TODO Auto-generated catch block
e.printStackTrace();
} } private void dowork()
{
// TODO Auto-generated method stub
try
{
Thread.sleep(3000);
}
catch (Exception e)
{
// TODO: handle exception
}
System.out.println(soldier + ": done");
} public static class BarrierRun implements Runnable
{ boolean flag;
int n; public BarrierRun(boolean flag, int n)
{
super();
this.flag = flag;
this.n = n;
} @Override
public void run()
{
if (flag)
{
System.out.println(n + "个任务完成");
}
else
{
System.out.println(n + "个集合完成");
flag = true;
} } } public static void main(String[] args)
{
final int n = 10;
Thread[] threads = new Thread[n];
boolean flag = false;
CyclicBarrier barrier = new CyclicBarrier(n, new BarrierRun(flag, n));
System.out.println("集合");
for (int i = 0; i < n; i++)
{
System.out.println(i + "报道");
threads[i] = new Thread(new Test("士兵" + i, barrier));
threads[i].start();
}
} }

打印结果:

集合
0报道
1报道
2报道
3报道
4报道
5报道
6报道
7报道
8报道
9报道
10个集合完成
士兵5: done
士兵7: done
士兵8: done
士兵3: done
士兵4: done
士兵1: done
士兵6: done
士兵2: done
士兵0: done
士兵9: done
10个任务完成

1.7 LockSupport

提供线程阻塞原语

和suspend类似

LockSupport.park();
LockSupport.unpark(t1);

与suspend相比 不容易引起线程冻结

LockSupport的思想呢,和 Semaphore有点相似,内部有一个许可,park的时候拿掉这个许可,unpark的时候申请这个许可。所以如果unpark在park之前,是不会发生线程冻结的。

下面的代码是[高并发Java 二] 多线程基础中suspend示例代码,在使用suspend时会发生死锁。

package test;

import java.util.concurrent.locks.LockSupport;

public class Test
{
static Object u = new Object();
static TestSuspendThread t1 = new TestSuspendThread("t1");
static TestSuspendThread t2 = new TestSuspendThread("t2"); public static class TestSuspendThread extends Thread
{
public TestSuspendThread(String name)
{
setName(name);
} @Override
public void run()
{
synchronized (u)
{
System.out.println("in " + getName());
//Thread.currentThread().suspend();
LockSupport.park();
}
}
} public static void main(String[] args) throws InterruptedException
{
t1.start();
Thread.sleep(100);
t2.start();
// t1.resume();
// t2.resume();
LockSupport.unpark(t1);
LockSupport.unpark(t2);
t1.join();
t2.join();
}
}

而使用 LockSupport则不会发生死锁。

另外

park()能够响应中断,但不抛出异常。中断响应的结果是,park()函数的返回,可以从Thread.interrupted()得到中断标志。

在JDK当中有大量地方使用到了park,当然LockSupport的实现也是使用unsafe.park()来实现的。

public static void park() {
unsafe.park(false, 0L);
}

1.8 ReentrantLock 的实现

下面来介绍下ReentrantLock的实现,ReentrantLock的实现主要由3部分组成:

  • CAS状态
  • 等待队列
  • park()

ReentrantLock的父类中会有一个state变量来表示同步的状态

/**
* The synchronization state.
*/
private volatile int state;

通过CAS操作来设置state来获取锁,如果设置成了1,则将锁的持有者给当前线程

final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}

如果拿锁不成功,则会做一个申请

public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}

首先,再去申请下试试看tryAcquire,因为此时可能另一个线程已经释放了锁。

如果还是没有申请到锁,就addWaiter,意思是把自己加到等待队列中去

private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}

其间还会有多次尝试去申请锁,如果还是申请不到,就会被挂起

private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}

同理,如果在unlock操作中,就是释放了锁,然后unpark,这里就不具体讲了。

2. 并发容器及典型源码分析

2.1 ConcurrentHashMap

我们知道HashMap不是一个线程安全的容器,最简单的方式使HashMap变成线程安全就是使用Collections.synchronizedMap,它是对HashMap的一个包装

public static Map m=Collections.synchronizedMap(new HashMap());

同理对于List,Set也提供了相似方法。

但是这种方式只适合于并发量比较小的情况。

我们来看下synchronizedMap的实现

private final Map<K,V> m;     // Backing Map
final Object mutex; // Object on which to synchronize SynchronizedMap(Map<K,V> m) {
if (m==null)
throw new NullPointerException();
this.m = m;
mutex = this;
} SynchronizedMap(Map<K,V> m, Object mutex) {
this.m = m;
this.mutex = mutex;
} public int size() {
synchronized (mutex) {return m.size();}
}
public boolean isEmpty() {
synchronized (mutex) {return m.isEmpty();}
}
public boolean containsKey(Object key) {
synchronized (mutex) {return m.containsKey(key);}
}
public boolean containsValue(Object value) {
synchronized (mutex) {return m.containsValue(value);}
}
public V get(Object key) {
synchronized (mutex) {return m.get(key);}
} public V put(K key, V value) {
synchronized (mutex) {return m.put(key, value);}
}
public V remove(Object key) {
synchronized (mutex) {return m.remove(key);}
}
public void putAll(Map<? extends K, ? extends V> map) {
synchronized (mutex) {m.putAll(map);}
}
public void clear() {
synchronized (mutex) {m.clear();}
}

它会将HashMap包装在里面,然后将HashMap的每个操作都加上synchronized。

由于每个方法都是获取同一把锁(mutex),这就意味着,put和remove等操作是互斥的,大大减少了并发量。

下面来看下ConcurrentHashMap是如何实现的

public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}

在 ConcurrentHashMap内部有一个Segment段,它将大的HashMap切分成若干个段(小的HashMap),然后让数据在每一段上Hash,这样多个线程在不同段上的Hash操作一定是线程安全的,所以只需要同步同一个段上的线程就可以了,这样实现了锁的分离,大大增加了并发量。

在使用ConcurrentHashMap.size时会比较麻烦,因为它要统计每个段的数据和,在这个时候,要把每一个段都加上锁,然后再做数据统计。这个就是把锁分离后的小小弊端,但是size方法应该是不会被高频率调用的方法。

在实现上,不使用synchronized和lock.lock而是尽量使用trylock,同时在HashMap的实现上,也做了一点优化。这里就不提了。

2.2 BlockingQueue

BlockingQueue不是一个高性能的容器。但是它是一个非常好的共享数据的容器。是典型的生产者和消费者的实现。

示意图:

具体可以查看Java实现生产者消费者问题与读者写者问题

系列:

[高并发Java 一] 前言

[高并发Java 二] 多线程基础

[高并发Java 三] Java内存模型和线程安全

[高并发Java 四] 无锁

[高并发Java 五] JDK并发包1

[高并发Java 六] JDK并发包2

[高并发Java 七] 并发设计模式

[高并发Java 八] NIO和AIO

[高并发Java 九] 锁的优化和注意事项

[高并发Java 十] JDK8对并发的新支持

java并发控制工具类和集合等的更多相关文章

  1. Java开发工具类集合

    Java开发工具类集合 01.MD5加密工具类 import java.security.MessageDigest; import java.security.NoSuchAlgorithmExce ...

  2. 25.大白话说java并发工具类-CountDownLatch,CyclicBarrier,Semaphore,Exchanger

    1. 倒计时器CountDownLatch 在多线程协作完成业务功能时,有时候需要等待其他多个线程完成任务之后,主线程才能继续往下执行业务功能,在这种的业务场景下,通常可以使用Thread类的join ...

  3. Java Properties工具类详解

    1.Java Properties工具类位于java.util.Properties,该工具类的使用极其简单方便.首先该类是继承自 Hashtable<Object,Object> 这就奠 ...

  4. 小记Java时间工具类

    小记Java时间工具类 废话不多说,这里主要记录以下几个工具 两个时间只差(Data) 获取时间的格式 格式化时间 返回String 两个时间只差(String) 获取两个时间之间的日期.月份.年份 ...

  5. java日期工具类DateUtil-续一

    上篇文章中,我为大家分享了下DateUtil第一版源码,但就如同文章中所说,我发现了还存在不完善的地方,所以我又做了优化和扩展. 更新日志: 1.修正当字符串日期风格为MM-dd或yyyy-MM时,若 ...

  6. java日期工具类DateUtil

    一名优秀的程序员,不仅需要有着丰富解决问题的方案,还需要的便是代码的沉淀,这不仅有助于自己快速的开发程序,也有利于保证程序的健壮.那如何才能沉淀自己的”代码“呢?从自己编写util开始其实就是一个不错 ...

  7. Java json工具类,jackson工具类,ObjectMapper工具类

    Java json工具类,jackson工具类,ObjectMapper工具类 >>>>>>>>>>>>>>> ...

  8. Java日期工具类,Java时间工具类,Java时间格式化

    Java日期工具类,Java时间工具类,Java时间格式化 >>>>>>>>>>>>>>>>>&g ...

  9. Java并发工具类 - CountDownLatch

    Java并发工具类 - CountDownLatch 1.简介 CountDownLatch是Java1.5之后引入的Java并发工具类,放在java.util.concurrent包下面 http: ...

随机推荐

  1. EasyUI Dialog 对话框 关闭事件

    在  $('#×××').dialog('close');  执行后触发 $(function(){ $("#titledialos").dialog({ onClose: fun ...

  2. 使用jquery刷新当前页面

    div的局部刷新 $(".dl").load(location.href+" .dl"); 全页面的刷新方法 window.location.reload()刷 ...

  3. 测试SD卡读写速度

    执行测试命令之前,一定先清除缓存:# echo 3> /proc/sys/vm/drop_caches SD卡读取的速度# echo 3> /proc/sys/vm/drop_caches ...

  4. BCH/BSV coin split troubleshooting

    BCH/BSV coin split troubleshootingMark Lundeberg 2018 November 27ResourcesGuides:Locktime based spli ...

  5. MBP 使用笔记

    1.svn下载指令(终端) svn checkout https://svn.openslam.org/data/svn/gmapping 参考:http://blog.csdn.net/q19910 ...

  6. java的eclipse的使用

    1下载eclipse地址:www.eclipse.org/downloads/ 解压就可安装 注意: 这可能你是没有安装java运行环境(jre或jdk) 直接www.java.com,下载就行 下一 ...

  7. IDEA工具 常用的设置

    以下均为笔者常用的的设置. 首先选择菜单栏的选项:“File” ----> “settings” 1.字体设置 (1)代码区的字体设置 如下图的选择,"Primary font&quo ...

  8. linux内核中hlist_head和hlist_node结构解析

    hlist_head和hlist_node用于散列表,分表表示列表头(数组中的一项)和列表头所在双向链表中的某项,两者结构如下: 1 2 3 struct hlist_head { struct hl ...

  9. git分支切换时的时间戳问题

    1.为什么git仓库没有保留文件修改时的时间戳?  摘自:https://git.wiki.kernel.org/index.php/Git_FAQ#Why_isn.27t_Git_preservin ...

  10. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...