G. (Zero XOR Subset)-less(线性基)
题目链接:http://codeforces.com/contest/1101/problem/G
题目大意:给你n个数,然后让你把这n个数分成尽可能多的集合,要求,每个集合的值看做这个集合所有元素的异或值,并且任意个集合对应的值,再进行异或也不能为0,然后如果不存在合理的分法的时候,输出-1。否则,输出能分出的最大的集合个数。
具体思路:求出这n个数的线性基就完事了,对于-1的情况,就是这n个值得异或值是0,这个时候无论你怎么分都是不管用的,其他情况直接输出线性基就可以了。
线性基的定义: 对于n个数,a1,a2,a3,a4.线性基b1,b2......,线性基满足的情况是这n个数,其中的任意个数的异或值都能用数组b中的某几个数求出来。
具体方法:一个数一个数的来,对于当前的数的首位(二进制),当前i位是1的时候,如果这一位没有被记录过,就让b[i]=a[i].否则,让a[i]^=b[i],继续往下走就可以了。
那么这个题为什么求线性基就可以了呢?我们可以通过求线性基的过程发现线性基的一个性质,线性基中的任意几个数都不可能异或是0,这个性质我们可以通过反证法来进行,如果异或是0的话,那就说明这个这几个数中,存在可以互相表达的情况,这就有违求线性基的过程了。
AC代码:
#include<bits/stdc++.h>
using namespace std;
# define ll long long
const int maxn = 2e5+;
int a[maxn],p[];
void cal(int n)
{
for(int i=; i<=n; i++)
{
if(a[i]==)continue;
for(int j=; j>=; j--)
{
if((a[i]&(<<j))==)
continue;
if(p[j]==)
{
p[j]=a[i];
break;
}
a[i]^=p[j];
}
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
int t=a[];
for(int i=; i<=n; i++)
{
t^=a[i];
}
if(t==)
printf("-1\n");
else
{
cal(n);
int num=;
for(int i=;i>=;i--){
if(p[i])num++;
}
printf("%d\n",num);
}
return ;
}
G. (Zero XOR Subset)-less(线性基)的更多相关文章
- CodeForces - 1101G :(Zero XOR Subset)-less(线性基)
You are given an array a1,a2,…,an of integer numbers. Your task is to divide the array into the maxi ...
- CF1101G (Zero XOR Subset)-less 线性基
传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1} ...
- (Zero XOR Subset)-less-线性基
(Zero XOR Subset)-less 题意 :把n个数分成多个集合,要求 不能有集合为空,最终不能有非空子集合异或值为0,尽可能划分的多一些. 思路 :非法情况就只有 n个数异或 为0,其他的 ...
- [WC2011]最大XOR和路径 线性基
[WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...
- 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]
题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...
- 牛客练习赛26 D xor序列 (线性基)
链接:https://ac.nowcoder.com/acm/contest/180/D 来源:牛客网 xor序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他 ...
- [luogu4151 WC2011] 最大XOR和路径 (线性基)
传送门 输入输出样例 输入样例#1: 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 输出样例#1: 6 说明 [样例说明] 根据异或的性质,将一个数异或两 ...
- 2019年牛客多校第四场 B题xor(线段树+线性基交)
题目链接 传送门 题意 给你\(n\)个基底,求\([l,r]\)内的每个基底是否都能异或出\(x\). 思路 线性基交板子题,但是一直没看懂咋求,先偷一份咖啡鸡板子写篇博客吧~ 线性基交学习博客:传 ...
- 2019牛客多校第四场B xor——线段树&&线性基的交
题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...
随机推荐
- process.tar.gz
exec1.c #include <stdio.h> #include <unistd.h> int main() { char *arglist[3]; arglist[0] ...
- #Linux第四周学习总结——扒开系统调用的三层皮(上)
Linux第四周学习总结--扒开系统调用的三层皮(上) 一.用户态.内核态和中断 系统调用通过库函数. 1.用户态和内核态 区分(不同的指令执行级别): 用户态:在相应的低执行状态下,代码的掌控范围受 ...
- Design and Implementation of a Routing Control Platform阅读笔记
Design and Implementation of a Routing Control Platform 0.Abstract 1.Introduction 2.Interoperating ...
- Alpha冲刺——day3
Alpha冲刺--day3 作业链接 Alpha冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602634 ...
- Beta 冲刺 二
团队成员 051601135 岳冠宇 031602629 刘意晗 031602248 郑智文 031602330 苏芳锃 031602234 王淇 照片 项目进展 岳冠宇 昨天的困难 fragment ...
- Centos7 安装netcat
1.下载 下载地址:https://sourceforge.net/projects/netcat/files/netcat/0.7.1/ 下载的是netcat-0.7.1.tar.gz版本 2.安装 ...
- Windows 64位环境的Java 服务配置
有个任务,需要远程起调Windows64服务器下的程序,那么需要在Windows服务器中注入一个deamon服务,都知道Linux环境做成后台服务非常简单,nohup &很快能解决问题,但wi ...
- Hard to prepare 2018 徐州赛区网络预赛
题意: 就是由2k 个数 每次选一个 可以选同样的 围成一个圈 使得相邻的数同或为真 求方案数 解析: 第一个数有2k 种选择 之后的n-2个数 都有2k-1 种选择 第n个数 我们要考虑 它的左右 ...
- hihoCoder 1632 Secret Poems(ACM-ICPC北京赛区2017网络同步赛)
时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 The Yongzheng Emperor (13 December 1678 – 8 October 1735), was ...
- alpine编译安装tengine,并使用supervisor启动
Alpine是一个小型的linux系统,官方docker镜像只有不到5MB,非常适合作为容器镜像. Alpine Linux is a security-oriented, lightweight L ...