洛谷 P1006 传纸条 多维DP
传纸条详解:
蒟蒻最近接到了练习DP的通知,于是跑来试炼场看看;发现有点难(毕竟是蒟蒻吗)便去翻了翻题解,可怎么都看不懂。为什么呢?蒟蒻发现题解里都非常详细的讲了转移方程,讲了降维优化,但这题新颖之处在于它走了两次,可大家貌似都没有重点去讲如何去重啊!
虽然去重很简易,限制一个for循环的范围就行了,但如果没注意这一点,很难理解。这里题解几乎都是for循环里写了几个k>j, j=i+1...然后都不注释一下就开始状态转移了。
所以,本题解诞生了:
写在前面:
如果你觉得此题有些难可以先去看看这道题,他的题面相对更简洁易懂,数据范围也非常小,可以去练练与本题相同的四维的解法。双倍经验啊!
基础:
四维DP,复杂度O(n^4)左右(空间也一样)
用f[i][j][p][q]表示第一张纸条传到(i,j),第二张纸条传到(p,q)所累计下来的好心程度和。转移方程其他题解已经很详细了吧(还是码一下吧...):
对于每一步有四种情况:
1.第一张纸条向下传,第二张纸条向下传;
2.第一张纸条向下传,第二张纸条向右传;
3.第一张纸条向右传,第二张纸条向下传;
4.第一张纸条向右传,第二张纸条向右传;
f[i][j]=max(f[i-1][j][p-1][q] ,f[i-1][j][p][q-1] ,f[i][j-1][p-1][q] ,f[i-1][j][p][q-1])+v[i][j]+v[p][q];
那么如何判重呢?这里其实可以不判,只要你没有重复情况就行了,所以for循环时我们限制p>q即可。
提高:
三维DP,复杂度O(n^3)(空间会多一倍)
我们发现每一张纸条每一步要么只走右边,要么只走下边,所以i+j=p+q;于是我们DP每一步(用k表示)的情况 ,用i表示第一张纸往下走了多少步,因为枚举了k=i+j(即走了多少步)所以可以用k-i来代替j。第二张纸也同样可以用k和p表示出来坐标。因为枚举的是步数(n+m-2)所以空间会多一倍。
于是 F[k][i][p]=max{F[k-1][i][p]+F[k-1][i][p-1]+F[k-1][i-1][p]+F[k-1][i-1][p-1];
进阶:
二维DP,复杂度和三维一样,但空间少了很多
如果你对背包掌握得足够优秀(不像我那么菜),你就能用背包思想来降维。怎么做到的呢?
我们从三维DP的状态转移式中发现它只和上一步有关,还只牵扯到P,P-1,没用到P+1.所以我们从后向前推,这样你现在用的二维数组就是上一步的,对P进行覆盖也不会产生后效性。
那重点来了这又如何去重呢?其实你只需要保证 p > i 就行了,因为这样就不会有重复情况出现,自然也不需要去重了。
代码如下:
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define init inline int
using namespace std;
int f[201][201];
int v[201][201];
int n,m;
init qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
init max(int a,int b,int c,int d){
a=a>b?a:b;
c=c>d?c:d;
return a>c?a:c;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(),m=qr();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
v[i][j]=qr();
for(int k=3;k<=n+m;k++)
for(int i=n;i>=1;i--)
for(int p=n;p>i;p--)
f[i][p]=max(f[i][p],f[i-1][p-1],f[i-1][p],f[i][p-1]),
f[i][p]+=v[i][k-i]+v[p][k-p];
printf("%d\n",f[n-1][n]);
return 0;
}
不太想极端压行了(码字累了),代码风格就这样了,不喜勿喷,谢谢了。
然后解释一下输出 f[n-1][n] 是因为j>i的去重需要。
洛谷 P1006 传纸条 多维DP的更多相关文章
- 洛谷P1006 传纸条 (棋盘dp)
好气,在洛谷上交就过了,在caioj上交就只有40分 之前在51nod做过这道题了. https://blog.csdn.net/qq_34416123/article/details/8180902 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1006 传纸条 题解
P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法 ...
- 洛谷P1006 传纸条(多维DP)
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们 ...
- [NOIP2008] 提高组 洛谷P1006 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- P1006 传纸条 多维DP
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...
- 洛谷 P1006 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- 洛谷P1006传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了. ...
- 洛谷p1006 传纸条 三维解法
原题目如下 原地址https://www.luogu.com.cn/problem/P1006 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做 ...
随机推荐
- Final发布 视频展示
1.视频链接 视频地址:http://v.youku.com/v_show/id_XMzk1OTYyNjE0NA==.html?spm=a2hzp.8244740.0.0 杨老师粉丝群——弹球学成语项 ...
- docker简易实践
docker简易实践 实验环境 操作系统:deepin 15.4 安装步骤 1.安装docker sudo apt-get install docker.io 2.启动docker服务 sudo se ...
- HDU 2088 Box of Bricks
http://acm.hdu.edu.cn/showproblem.php?pid=2088 Problem Description Little Bob likes playing with his ...
- vmwear导出OVF模板解析(解决ovf导入服务器失败问题,虚拟机版本等)
我们将vmwear虚拟机导出ovf模板后,有三个文件: 1,.mf 保存着.ovf和.vmdk两个文件的SHA1值,用于校验文件的完整性 2,.ovf 以XML格式保存着虚拟机的配置信息 3,.vmd ...
- node之文件的下载
/** * 文件的下载 */ let express = require('express'); let app = express(); app.get('/',(req,res)=>{ re ...
- Docker(二十六)-Docker Compose编排容器
1. 前言 Docker Compose 是 Docker 容器进行编排的工具,定义和运行多容器的应用,可以一条命令启动多个容器. 使用Compose 基本上分为三步: Dockerfile 定义应用 ...
- 2007-10的PWX OracleCdc问题解答
1. 捕获增量的底层机制是什么?(例如日志.触发器.LogMiner) PWX利用Oracle的LogMiner来提取来自于Oracle的增量, LogMiner是由Oracle数据库提供的,如果当前 ...
- MT【84】夹逼定值
分析:此类题还是比较常见的,左右都有不等式,中间夹着一个式子,我们可以找个$x$使得中间式子满足的条件显示出来. 类似的方法可以用在这道浙江高考文科压轴题上
- 【题解】 [HEOI2016]排序题解 (二分答案,线段树)
题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行 ...
- 企业级 SpringBoot 教程 (一)构建第一个SpringBoot工程
简介 spring boot 它的设计目的就是为例简化开发,开启了各种自动装配,你不想写各种配置文件,引入相关的依赖就能迅速搭建起一个web工程.它采用的是建立生产就绪的应用程序观点,优先于配置的惯例 ...