传纸条详解:

蒟蒻最近接到了练习DP的通知,于是跑来试炼场看看;发现有点难(毕竟是蒟蒻吗)便去翻了翻题解,可怎么都看不懂。为什么呢?蒟蒻发现题解里都非常详细的讲了转移方程,讲了降维优化,但这题新颖之处在于它走了两次,可大家貌似都没有重点去讲如何去重啊!

虽然去重很简易,限制一个for循环的范围就行了,但如果没注意这一点,很难理解。这里题解几乎都是for循环里写了几个k>j, j=i+1...然后都不注释一下就开始状态转移了。

所以,本题解诞生了:

写在前面:

P1004 方格取数

如果你觉得此题有些难可以先去看看这道题,他的题面相对更简洁易懂,数据范围也非常小,可以去练练与本题相同的四维的解法。双倍经验啊!

基础:

四维DP,复杂度O(n^4)左右(空间也一样)

用f[i][j][p][q]表示第一张纸条传到(i,j),第二张纸条传到(p,q)所累计下来的好心程度和。转移方程其他题解已经很详细了吧(还是码一下吧...):

对于每一步有四种情况:

1.第一张纸条向下传,第二张纸条向下传;

2.第一张纸条向下传,第二张纸条向右传;

3.第一张纸条向右传,第二张纸条向下传;

4.第一张纸条向右传,第二张纸条向右传;

f[i][j]=max(f[i-1][j][p-1][q] ,f[i-1][j][p][q-1] ,f[i][j-1][p-1][q] ,f[i-1][j][p][q-1])+v[i][j]+v[p][q];

那么如何判重呢?这里其实可以不判,只要你没有重复情况就行了,所以for循环时我们限制p>q即可。

提高:

三维DP,复杂度O(n^3)(空间会多一倍)

我们发现每一张纸条每一步要么只走右边,要么只走下边,所以i+j=p+q;于是我们DP每一步(用k表示)的情况 ,用i表示第一张纸往下走了多少步,因为枚举了k=i+j(即走了多少步)所以可以用k-i来代替j。第二张纸也同样可以用k和p表示出来坐标。因为枚举的是步数(n+m-2)所以空间会多一倍。

于是 F[k][i][p]=max{F[k-1][i][p]+F[k-1][i][p-1]+F[k-1][i-1][p]+F[k-1][i-1][p-1];

进阶:

二维DP,复杂度和三维一样,但空间少了很多

如果你对背包掌握得足够优秀(不像我那么菜),你就能用背包思想来降维。怎么做到的呢?

我们从三维DP的状态转移式中发现它只和上一步有关,还只牵扯到P,P-1,没用到P+1.所以我们从后向前推,这样你现在用的二维数组就是上一步的,对P进行覆盖也不会产生后效性。

那重点来了这又如何去重呢?其实你只需要保证 p > i 就行了,因为这样就不会有重复情况出现,自然也不需要去重了。

代码如下:

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define init inline int using namespace std; int f[201][201];
int v[201][201];
int n,m; init qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} init max(int a,int b,int c,int d){
a=a>b?a:b;
c=c>d?c:d;
return a>c?a:c;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(),m=qr();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
v[i][j]=qr();
for(int k=3;k<=n+m;k++)
for(int i=n;i>=1;i--)
for(int p=n;p>i;p--)
f[i][p]=max(f[i][p],f[i-1][p-1],f[i-1][p],f[i][p-1]),
f[i][p]+=v[i][k-i]+v[p][k-p];
printf("%d\n",f[n-1][n]);
return 0;
}

不太想极端压行了(码字累了),代码风格就这样了,不喜勿喷,谢谢了。

然后解释一下输出 f[n-1][n] 是因为j>i的去重需要。

洛谷 P1006 传纸条 多维DP的更多相关文章

  1. 洛谷P1006 传纸条 (棋盘dp)

    好气,在洛谷上交就过了,在caioj上交就只有40分 之前在51nod做过这道题了. https://blog.csdn.net/qq_34416123/article/details/8180902 ...

  2. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  3. 洛谷 P1006 传纸条 题解

    P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法 ...

  4. 洛谷P1006 传纸条(多维DP)

    小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们 ...

  5. [NOIP2008] 提高组 洛谷P1006 传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  6. P1006 传纸条 多维DP

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...

  7. 洛谷 P1006 传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  8. 洛谷P1006传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了. ...

  9. 洛谷p1006 传纸条 三维解法

    原题目如下 原地址https://www.luogu.com.cn/problem/P1006 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做 ...

随机推荐

  1. 如何理解nexus

    理解: Nexus即区块链:分布式部署肯定是构建去中心化网络理所当然的解决方向--通过P2P协议将全世界所有节点计算机彼此相互连接,形成一张密密麻麻的网络:以巧妙的机制,通过节点之间的交易数据同步来保 ...

  2. 前后端同学必会的Linux基础命令

    无论是前端还是后端同学,一些常用的linux命令还是必须要掌握的.发布版本.查看日志等等都会用到.以下是我简单的总结了一些简单又常用的命令,欢迎大家补充.希望能帮助到大家 基础篇 1.进入目录 cd ...

  3. PAT甲题题解-1072. Gas Station (30)-dijkstra最短路

    题意:从m个加油站里面选取1个站点,使得其离住宅的最近距离mindis尽可能地远,并且离所有住宅的距离都在服务范围ds之内.如果有很多相同mindis的加油站,输出距所有住宅平均距离最小的那个.如果平 ...

  4. 对软件工程Alpha迭代的反思与总结

    对软件工程Alpha迭代的反思与总结 本次软件工程的A轮迭代,我们组出了不小的问题.作为一个团队来说,我们的队伍出现了很严重的状况,严重到让老师觉得我们一度失控.于是我撰写此文,借以反思.总结和提高. ...

  5. C语言函数参数传递

    1.值传递 void swap(int x,int y) { int temp = x; x = y; y = temp; } void main() { , b = ; swap(a, b); } ...

  6. Beta冲刺——day5

    Beta冲刺--day5 作业链接 Beta冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602134 王龙 ...

  7. 格式化输出Json对象

    1.调用方式: alert(JsonUti.convertToString(jsonObj)); //jsonObj为json对象. 2.格式化输出Json对象方法定义: var JsonUti = ...

  8. CentOS75 安装Oracle18c

    1. 参考地址 https://blog.csdn.net/u010257584/article/details/50902472https://www.cnblogs.com/kerrycode/a ...

  9. 深入理解Java之线程池(爱奇艺面试)

    爱奇艺的面试官问 (1) 线程池是如何关闭的 (2) 如何确定线程池的数量 一.线程池销毁,停止线程池 ThreadPoolExecutor提供了两个方法,用于线程池的关闭,分别是shutdown() ...

  10. mininet *** Error: RTNETLINK answers: No such file or directory 问题及解决方法

    一.问题 按照mininet官网中从源码安装步骤进行安装后,运行命令sudo mn --link tc,bw=10,提示说*** Error: RTNETLINK answers: No such f ...