做OJ需要用到搜索最短路径的题,于是整理了一下关于图的搜索算法:

图的搜索大致有三种比较常用的算法:

  • 迪杰斯特拉算法(Dijkstra算法)
  • 弗洛伊德算法(Floyd算法)
  • SPFA算法

Dijkstra算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。

算法的思路:

Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。
然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,
然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。
然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

举例:

下面我求下图,从顶点v1到其他各个顶点的最短路径

首先第一步,我们先声明一个dis数组,该数组初始化的值为:

我们的顶点集T的初始化为:T={v1}

既然是求 v1顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离v1顶点最近是 v3顶点。当选择了 2 号顶点后,dis[2](下标从0开始)的值就已经从“估计值”变为了“确定值”,即 v1顶点到 v3顶点的最短路程就是当前 dis[2]值。将V3加入到T中。
为什么呢?因为目前离 v1顶点最近的是 v3顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 v1顶点到 v3顶点的路程进一步缩短了。因为 v1顶点到其它顶点的路程肯定没有 v1到 v3顶点短.

OK,既然确定了一个顶点的最短路径,下面我们就要根据这个新入的顶点V3会有出度,发现以v3 为弧尾的有: < v3,v4 >,那么我们看看路径:v1–v3–v4的长度是否比v1–v4短,其实这个已经是很明显的了,因为dis[3]代表的就是v1–v4的长度为无穷大,而v1–v3–v4的长度为:10+50=60,所以更新dis[3]的值,得到如下结果:

因此 dis[3]要更新为 60。这个过程有个专业术语叫做“松弛”。即 v1顶点到 v4顶点的路程即 dis[3],通过 < v3,v4> 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛v1顶点到其余各个顶点的路程。

然后,我们又从除dis[2]和dis[0]外的其他值中寻找最小值,发现dis[4]的值最小,通过之前是解释的原理,可以知道v1到v5的最短距离就是dis[4]的值,然后,我们把v5加入到集合T中,然后,考虑v5的出度是否会影响我们的数组dis的值,v5有两条出度:< v5,v4>和 < v5,v6>,然后我们发现:v1–v5–v4的长度为:50,而dis[3]的值为60,所以我们要更新dis[3]的值.另外,v1-v5-v6的长度为:90,而dis[5]为100,所以我们需要更新dis[5]的值。更新后的dis数组如下图:

然后,继续从dis中选择未确定的顶点的值中选择一个最小的值,发现dis[3]的值是最小的,所以把v4加入到集合T中,此时集合T={v1,v3,v5,v4},然后,考虑v4的出度是否会影响我们的数组dis的值,v4有一条出度:< v4,v6>,然后我们发现:v1–v5–v4–v6的长度为:60,而dis[5]的值为90,所以我们要更新dis[5]的值,更新后的dis数组如下图:

然后,我们使用同样原理,分别确定了v6和v2的最短路径,最后dis的数组的值如下:

因此,从图中,我们可以发现v1-v2的值为:∞,代表没有路径从v1到达v2。所以我们得到的最后的结果为:

起点  终点    最短路径    长度
v1 v2 无 ∞
v3 {v1,v3}
v4 {v1,v5,v4}
v5 {v1,v5}
v6 {v1,v5,v4,v6}

转载自Ouyang_Lianjun的博客。

利用上述思路结题TjuOj 2870题目和代码如下:

Given a map of your country, there are N cities. The cities are labeled as 0, 1, ..., N - 1, and you live in city 0. Can you calculate out the K-th nearest city form you? If two or more cities have the same distance form you, you may assume that the city with smaller label is nearer than the city with bigger one.

Input

There are several cases. The first line of each case is two integers N and M (1 ≤ N ≤ 200, 0 ≤ M ≤ 10000), which is the number of cities in your country and the total number of roads in your country. There are three integers in each of the following M lines, ABC, which descript one road. A and B are the two cities that connected by that road, and C is the length of that road (1 ≤ C ≤ 2000). The roads are of both directions, and no two roads connect two same cities. There is at least one path between any two cities. At the last line of each case is a single integer K (1 ≤ K < N).

The last case is followed by a line with a single 0.

Output

Print the label of the K-th nearest city.

/*
* 2870
* 利用迪杰斯特拉克算法找单一源点出发的最短路径
* Created on: 2018年11月15日
* Author: Jeason
*/
#include <iostream>
#include <stdio.h>
#include <cstring>
using namespace std;
#define inf 999999999 int n, q;
int g[][]; //存放边的数组
int d[]; //待求距离的数组
int vis[]; //标记是否已访问 void Dijkstra(int k) {
int i, j;
for (i = ; i < n; i++) {
d[i] = inf; //带求距离的数组
}
d[] = ; //第一个点的距离到源点距离为0;
memset(vis, , sizeof(vis)); //初始化访问标记数组(未被发现最短路径的点);
int cnt = -;
int ans;
for (i = ; i < n; i++) { //遍历N次,每次找到一个点到源点的最短路径;
int Min = inf; //最小值初始化正无穷
int pos = -; //本次认为离远点最近的位置,初始化
for (j = ; j < n; j++) if (!vis[j]) { //对每一个正在遍历的点,遍历相连的其他点(未被发现最短路径的点)
if ( d[j] < Min ) { //找当前最小的值
Min = d[j];
pos = j; }
}
cnt++; //标记循环次数,每次找到一个稍微远一点的点
if (cnt == k) {
ans = pos;
break;
}
vis[pos] = ;
for (j = ; j < n; j++) { //更新已经找到最近点后,通过该点其附近相连的点会不会比源点直接到该点近。
if ( d[pos] + g[pos][j] < d[j]) {
d[j] = g[pos][j] + d[pos];
}
}
}
cout << ans << endl;
} int main() {
int i, j;
while (cin >> n) { //读进来n个点
if (n == ) break;
for (i = ; i < n; i++) { //把长度初始化最大
for (j = ; j < n; j++) {
g[i][j] = inf;
}
}
scanf("%d", &q); //读入q条边
for (i = ; i <= q; i++) {
int a, b, c;
cin >> a >> b >> c;
if (g[a][b] > c) {
g[a][b] = g[b][a] = c;
}
}
int k;
scanf("%d", &k);
Dijkstra(k);
}
return ;
} /*
Sample Input
4 3
0 1 120
0 2 180
1 3 40
3
4 3
0 1 120
0 3 60
3 2 30
1
0
Sample Output
2
3
*/

图的最短路径-----------Dijkstra算法详解(TjuOj2870_The Kth City)的更多相关文章

  1. 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)

    这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...

  2. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

  3. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  4. 最短路径问题---Dijkstra算法详解

    侵删https://blog.csdn.net/qq_35644234/article/details/60870719 前言 Nobody can go back and start a new b ...

  5. Dijkstra算法详解

    1.dijkstra算法简介 Dijkstra算法是由E.W.Dijkstra于1959年提出,又叫迪杰斯特拉算法,它应用了贪心算法模式,是目前公认的最好的求解最短路径的方法.算法解决的是有向图中单个 ...

  6. HDU 1874 畅通工程续-- Dijkstra算法详解 单源点最短路问题

    参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上:  迪科斯彻算法分解(优酷) problem link -> HDU 1874 ...

  7. 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)

    一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...

  8. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  9. 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )

    数据结构实验之图论七:驴友计划 Time Limit: 1000 ms           Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

随机推荐

  1. mysql学习(1)

    开始我们基础的mysql学习 第一部分:补充知识 1. 昨天讲到的mysql初始化密码为空,今天又get到一种新的方法 Mysql安装后需要做的 Mysql安装成功后,默认的root用户密码为空,你可 ...

  2. SQLite与ContentProvider

    http://www.rom007.com/SQLite-yu-ContentProvider.html 在Android中,对于数据的存贮,有几种方式,有文件方式,有文件式数据库方式,Android ...

  3. M1阶段事后总结

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述?我们组要爬取网上的内容供下一组使用,定义的不太清楚,因为用户只有下一个团队所以没有进行详细的需求分析 ...

  4. 第一次冲刺阶段后五天总结和第一次 Sprint

    第一次冲刺阶段后五天总结(11.16-11.20) 一.准备实现的功能 1 在游戏中随机显示式子 点击进入答题则进入答题界面,显示式子 2 设置限时或者规定答题数目模式 进入游戏,选择不同模式 3 产 ...

  5. linux 开机直接进入命令行

    一.图形界面和命令行切换 linux系统在启动图形化界面后,可以在图形界面和命令行之间来回切换,linux提供了6个命令行终端(terminal或Console),分别为tty1——tty6,使用Ct ...

  6. 题解 P1184 【高手之在一起】

    好!机会来了! 依评论区的要求,小金羊献上STLset<string>的题解. 当然不会告诉你map<string,bool>我根本不会用 所以,有什么内置的成员函数救救孩子? ...

  7. Day23-Model操作和Form操作-转载

    参考出处: http://blog.csdn.net/fgf00/article/details/54614706 Model和Form以及ModelForm简介 Model操作: 创建数据库表结构 ...

  8. MT【81】含参数三次函数因式分解

    解答: 评:这题实质上是对关于$x$的三次函数进行了一个因式分解.这种把$a$看成主元的技巧是初中处理高次的因式分解的常用技巧.如果用三次求导去做计算量比较大,要计算极值.

  9. 沉迷AC自动机无法自拔之:[UVA 11468] Substring

    图片加载可能有点慢,请跳过题面先看题解,谢谢 这个鬼题目,上一波套路好了 先用题目给的模板串建\(AC\)自动机,把单词结尾标记为 \(val=1\),然后在建好的\(AC\)自动机上跑 \(dp\) ...

  10. ARG102E:Stop. Otherwise...

    传送门 Sol 对于每个 \(i\) ,可以把 \(k\) 个数字分成 \((x,i-x)\) 的若干组. 那么就是求每组只能其中选择一个且可以重复的方案数. 预处理 \(f[i][j]\) 表示从 ...