洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)
洛谷题目传送门
我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用。。。。。。
对每次询问都做一遍多重背包,显然T飞,就不考虑了
关键就在于每次询问如何利用重复的信息
我这么弱,当然是想不到容斥原理的啦
暂且先当成完全背包,每种硬币可使用无限次,预处理\(f\)数组,\(f[i]\)等于买价值\(i\)的东西的总方案数
然后就要从中减去不合法的。首先肯定会有一种硬币超额使用,第\(j\)中硬币等于说强制选了\(d_j+1\)个,剩下的依然随便选,那么第
\(j\)种硬币超额的不合法的方案数等于\(f[s-(d_j+1)*c_j]\),于是从答案里减去\(\sum_{j=1}^4f[s-(d_j+1)*c_j]\)
还要注意,第一种第二种都超额、第一种第三种都超额、第一种第四种都超额、第二种第三种都超额、第二种第四种都超额、第三种第四种都超额的方案在上一步中都被减了两次,所以额外都加一次回来。。。。。。(接着把容斥做下去就不说了)
复杂度降到\(O(4maxs+4×2^4tot)\),轻松通过
注意开longlong就好啦
#include<cstdio>
#define R register
typedef long long LL;
const int S=100009;
LL f[S]={1ll};
int main(){
R int c[4],d[4],tot,i,j,k,now,s,ss,tmp;
R LL ans;
for(j=0;j<4;++j)scanf("%d",&c[j]);
scanf("%d",&tot);
for(j=0;j<4;++j)
for(i=c[j];i<S;++i)
f[i]+=f[i-c[j]];//完全背包预处理
while(tot--){
for(j=0;j<4;++j)scanf("%d",&d[j]);
scanf("%d",&s);
ans=f[s];
for(ss=1;ss<=15;++ss){//二进制数枚举集合,容斥
now=s;
for(tmp=ss,j=k=0;tmp;tmp>>=1,++j)
if(tmp&1)k^=1,now-=(d[j]+1)*c[j];
//注意k的作用,判断奇偶
if(now>=0)k?ans-=f[now]:ans+=f[now];
}
printf("%lld\n",ans);
}
return 0;
}
洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)的更多相关文章
- 洛谷—— P1450 [HAOI2008]硬币购物
P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...
- 洛谷P1450 [HAOI2008]硬币购物
题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理
考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...
- 【洛谷P1450】硬币购物
题目大意:给定 4 种面值的硬币和相应的个数,求购买 S 元商品的方案数是多少. 题解: 考虑没有硬币个数的限制的话,购买 S 元商品的方案数是多少,这个问题可以采用完全背包进行预处理. 再考虑容斥, ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)
2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...
- BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包
BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...
- P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...
随机推荐
- 经常使用命令 echo、@、call、pause、rem
经常使用命令 echo.@.call.pause.rem(小技巧:用::取代rem)是批处理文件最经常使用的几个命令,我们就从他们開始学起. 首先, @ 不是一个命令, 而是DOS 批处理的一个特殊标 ...
- mfc 进程的优先级
知识点: 进程优先级 获取当前进程句柄 优先级设置 优先级变动 优先级获取 一.进程优先级(优先级等级) 简单的说就是进程(线程)的优先级越高,那么就可以分占相对多的CPU时间片. ...
- Kubernetes学习之路(二十二)之Pod资源调度
目录 Pod资源调度 1.常用的预选策略 2.优选函数 3.节点亲和调度 3.1.节点硬亲和性 3.2.节点软亲和性 4.Pod资源亲和调度 4.1.Pod硬亲和度 4.2.Pod软亲和度 4.3.P ...
- Mybatis使用generator自动生成的Example类使用OR条件查询
参考:https://blog.csdn.net/qq_36614559/article/details/80354511 public List<AssetsDevicetypeRefacto ...
- 真机调试傻瓜图文教程(Xcode6.4)
先准备好99刀,真机调试才带你玩. PS:万能宝十来块钱可以买个资格... Developer Apple上的设置 1.打开https://developer.apple.com/,点击Member ...
- 设计模式 笔记 策略模式 Strategy
//---------------------------15/04/28---------------------------- //Strategy 策略模式----对象行为型模式 /* 1:意图 ...
- centos7 源码部署LNMP
一.环境 系统环境:centos 7.4 64位 Nginx:1.7.9 MySQL: 5.7.20 (二进制包) PHP:5.6.37 二.Ngin 安装 Nginx部署 yum install ...
- liunx总结题
一. 简述什么是Linux内核,这个学期学了Linux课程的哪些内容.(10分) Linux内核诞生于1991年,由芬兰学生Linus Torvalds(林纳斯.托瓦斯)发起,那 ...
- unity物理检测的几种方式
(由于本人大多做2d游戏,因此以下以2d为主介绍,但是具体和3d相差不大) 在unity中有很多不同的物理检测方式,但是大致可以分为以下几种: 1.Physics2d检测系列 Physics2d.Li ...
- 再探Redux Middleware
前言 在初步了解Redux中间件演变过程之后,继续研究Redux如何将中间件结合.上次将中间件与redux硬结合在一起确实有些难看,现在就一起看看Redux如何加持中间件. 中间件执行过程 希望借助图 ...