【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)

题面

BZOJ

洛谷

题解

因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的、到达每个点的方案数就好了,那么矩阵大小就是\(10*n\)的(似乎只要\(9*n\))。构建转移矩阵之后直接矩阵快速幂即可。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 2009
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,T,N;
char g[20][20];
struct Matrix
{
int s[110][110];
void clear(){memset(s,0,sizeof(s));}
void init(){clear();for(int i=1;i<=N;++i)s[i][i]=1;}
int*operator[](int x){return s[x];}
}A;
Matrix operator*(Matrix a,Matrix b)
{
Matrix ret;ret.clear();
for(int i=1;i<=N;++i)
for(int j=1;j<=N;++j)
for(int k=1;k<=N;++k)
ret[i][j]=(ret[i][j]+a[i][k]*b[k][j])%MOD;
return ret;
}
Matrix fpow(Matrix a,int b)
{
Matrix s;s.init();
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int id(int t,int i){return t*n+i;}
int main()
{
n=read();T=read();N=n*10;
for(int i=1;i<=n;++i)scanf("%s",g[i]+1);
for(int i=0;i<9;++i)
for(int j=1;j<=n;++j)
A[id(i+1,j)][id(i,j)]+=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(g[i][j]!='0')
{
int w=g[i][j]-48;
A[id(9-w+1,i)][id(9,j)]+=1;
}
A=fpow(A,T);
printf("%d\n",A[id(9,1)][id(9,n)]);
return 0;
}

【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)的更多相关文章

  1. BZOJ1297: [SCOI2009]迷路 矩阵快速幂

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  2. BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  3. Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化

    大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...

  4. [SCOI2009]迷路(矩阵快速幂) 题解

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  5. BZOJ 1297 迷路(矩阵快速幂)

    很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...

  6. BZOJ1297 [SCOI2009]迷路 矩阵乘法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...

  7. bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)

    题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数. 当时看到这题就想到了某道奶牛题(戳我).这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走 ...

  8. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  9. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

随机推荐

  1. 【小程序】&nbsp; 的识别

    给标签添加   decode="{{true}}" space="{{true}}"  属性 eg: <text decode="{{true} ...

  2. CentOS 建立本地yum源服务器

    安装CentOS系统,配置系统的网络环境 配置静态IP vi /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 TYPE=Ethernet O ...

  3. 【LeeCode23】Merge k Sorted Lists★★★

    1.题目描述: 2.解题思路: 题意:将K个已经排序的链表合并成一个排序的链表,分析并描述所用算法的复杂度. 方法一:基于“二分”思想的归并排序.本文用非递归和递归两种方法实现. (1)非递归:归并排 ...

  4. springboot整合redis——redisTemplate的使用

    一.概述 相关redis的概述,参见Nosql章节 redisTemplate的介绍,参考:http://blog.csdn.net/ruby_one/article/details/79141940 ...

  5. Android“寄生兽”漏洞技术分析

    一.关于app的缓存代码 安卓的应用程序apk文件是zip压缩格式的文件,apk文件中包含的classes.dex文件相当于app的可执行文件,当app运行后系统会对classes.dex进行优化,生 ...

  6. 2017-2018-2 20155234『网络对抗技术』Exp6:信息收集与漏洞扫描

    whois查询 whois用来进行域名注册信息查询.以常用的百度为例,输入whois baidu.com可查询到3R注册信息,包括注册人的姓名.组织和城市等信息. 我们可以很清楚地看到baidu的3R ...

  7. C++之enum枚举量声明、定义、使用与枚举类详解

    C++之enum枚举量声明.定义.使用与枚举类详解 学习一个东西,首先应该指导它能做什么,其次去知道它怎么去做,最后知道为什么去这么做. 知其然知其所以然.不能冒进 ,一步一步的慢慢来.

  8. 使用DOS工具修复数据库

    当SQL Server 实例出现异常,无法远程链接时,数据库管理员需要登陆到SQL Server实例机器上,通过命令行工具,修复异常. 一,使用net命令行启动数据库 通过net start 命令启动 ...

  9. 【原】python3.7 无法pip安装提示ssl错误解决方案

    问题 pip is configured with locations that require TLS/SSL, however the ssl module in Python is not av ...

  10. QUIC和TCP

    作者:henrystark henrystark@126.com Blog: http://henrystark.blog.chinaunix.net/ 日期:20140626 本文遵循CC协议:署名 ...