【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)

题面

atcoder

有 \(2^n\) 名选手,编号为 \(1\) 至 \(2^n\) 。现在这 \(2^n\) 名选手将进行 \(n\) 轮淘汰赛,决出胜者。若 \(x<y\) ,则 \(x\) 能够战胜 \(y\) 。但有 \(m\) 个例外,\(1\) 号选手会输给这 \(m\) 个选手。问有多少中排列方式使得\(1\)号选手取得胜利。\(n,m≤16\)。

(这是肖大佬的翻译)

题解

钦定\(1\)号站在一号位置(这个无所谓吧),剩下的第\(i\)个位置站的人是\(p_i\),那么首先\(1\)会和\(p_2\)打,然后和\(min(p_3,p_4)\),接下来是\(min(p_5,p_6,p_7,p_8)\),以此类推下去。

我们的方案数等于上述\(n\)个集合中每个集合的最小值都不是给定的\(m\)个人。

直接算不好搞,容斥考虑。钦定哪些块的最小值一定是给定的\(m\)个人,那么假设给这\(n\)个区间的人,也就是把这\(n\)块编号然后状压一下,那么方案数定义为\(f(S)\),那么最终的答案就是\(\sum (-1)^{|S|}f(S)\)。

至于这个\(f(S)\)怎么求?我们把所有数从大往小排序,考虑\(dp\),设\(f[i][S]\)表示最大的\(i\)个标号的人中,\(S\)所代表的子集所包含的区间中的最小值是给定的\(m\)个人中的一个。转移的话首先是这个人不放入任何一个集合中。另外是构成一个集合的最小值,枚举一下构成哪个集合,然后用组合数算一下方案数即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAX 17
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int bin[MAX],jc[1<<MAX],inv[1<<MAX],jv[1<<MAX];
int C(int n,int m){if(n<m)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int a[MAX],n,m,ans,f[MAX+1][1<<MAX],cnt[1<<MAX];
int main()
{
n=read();m=read();cnt[0]=jc[0]=bin[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;++i)bin[i]=bin[i-1]<<1;
for(int i=1;i<=bin[n];++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=bin[n];++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=bin[n];++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=bin[n];++i)cnt[i]=(i&1)?MOD-cnt[i>>1]:cnt[i>>1];
for(int i=1;i<=m;++i)a[i]=read();sort(&a[1],&a[m+1]);
f[m+1][0]=1;
for(int i=m;i;--i)
for(int t=0;t<bin[n];++t)
if(f[i+1][t])
{
add(f[i][t],f[i+1][t]);
int p=bin[n]-1-t;
for(int j=0;j<n;++j)
if(!(t&(1<<j)))
add(f[i][t|(1<<j)],1ll*C(p-a[i]+1,(1<<j)-1)*f[i+1][t]%MOD*jc[1<<j]%MOD);
}
for(int i=0;i<bin[n];++i)
add(ans,1ll*f[1][i]*jc[bin[n]-1-i]%MOD*cnt[i]%MOD);
ans=1ll*ans*bin[n]%MOD;
printf("%d\n",ans);
return 0;
}

【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)的更多相关文章

  1. ARC093F Dark Horse 容斥原理+DP

    题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...

  2. [动态规划]状态压缩DP小结

     1.小技巧 枚举集合S的子集:for(int i = S; i > 0; i=(i-1)&S) 枚举包含S的集合:for(int i = S; i < (1<<n); ...

  3. [POJ 2923] Relocation (动态规划 状态压缩)

    题目链接:http://poj.org/problem?id=2923 题目的大概意思是,有两辆车a和b,a车的最大承重为A,b车的最大承重为B.有n个家具需要从一个地方搬运到另一个地方,两辆车同时开 ...

  4. POJ 1185 炮兵阵地(动态规划+状态压缩)

    炮兵阵地 Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原( ...

  5. ACM学习历程—HDU1584 蜘蛛牌(动态规划 && 状态压缩 || 区间DP)

    Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起 ...

  6. HDOJ-1074(动态规划+状态压缩)

    Doing Homework HDOJ-1074 1.本题主要用的是状态压缩的方法,将每种状态用二进制压缩表示 2.状态转移方程:dp[i|(1<<j)]=min(dp[i|(1<& ...

  7. [ZOJ 3662] Math Magic (动态规划+状态压缩)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3662 之前写过这道题,结果被康神吐槽说代码写的挫. 的确,那时候 ...

  8. 动态规划状态压缩-poj1143

    题目链接:http://poj.org/problem?id=1143 题目描述: 代码实现: #include <iostream> #include <string.h> ...

  9. [AtCoder ARC093F]Dark Horse

    题目大意:有$2^n$个人,每相邻的两个人比赛一次.令两个人的编号为$a,b(a\leqslant b)$,若$a\neq 1$,则$a$的人获胜:否则若$b\in S$则$b$获胜,不然$1$获胜. ...

  10. 3.4 熟练掌握动态规划——状态压缩DP

    从旅行商问题说起—— 给定一个图,n个节点(n<=15),求从a节点出发,经历每个节点仅一次,最后回到a,需要的最短时间. 分析: 设定状态S代表当前已经走过的城市的集合,显然,S<=(1 ...

随机推荐

  1. Redis数据库的安装与基本应用

    一:了解NoSQL 1:介绍:Nosql的全称是Not Only Sql,这个概念早起就有人提出,在09年的时候比较火.Nosql指的是非关系型数据库,而我们常用的都是关系型数据库.就像我们常用的my ...

  2. 20155229《网络对抗技术》Exp5:MSF基础应用

    实验内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms08-067; 一个针对浏览器的攻击,如ms11-050: 一个针对 ...

  3. Luogu P1196 [NOI2002]银河英雄传说

    一年没写博客了(滑稽). 这道题很玄学,导致自己都有一个坑人的问题求解.如果有大佬有能力求帮助:https://www.luogu.org/discuss/show?postid=30231 再来讲一 ...

  4. CF1096G Lucky Tickets

    https://www.luogu.org/problemnew/show/CF1096G 显然dp出用\(\frac{n}{2}\)个数能拼出来的每个数的方案数,平方相加就行了,dp显然ntt+快速 ...

  5. django在admin后台注册自己创建的数据库表

    django在admin后台注册自己创建的数据库表,这样我们就可以在admin后台看到表结构信息,我们就可以在admin后台快速录入表记录信息 如果没有注册,那么你在登录django自带的admin的 ...

  6. Error:Could not find common.jar (android.arch.core:common:1.0.0)

    Error:Could not find common.jar (android.arch.core:common:1.0.0). Searched in the following location ...

  7. Runtime.getRuntime().addShutdownHook(Thread thread) 程序关闭时钩子,优雅退出程序

    根据 Java API, 所谓 shutdown hook 就是已经初始化但尚未开始执行的线程对象.在Runtime 注册后,如果JVM要停止前,这些 shutdown hook 便开始执行.也就是在 ...

  8. 浅谈SVG(可缩放的矢量图形)

    前一段项目中用到了svg图片就和其他的元素一样 直接引用就可以展示在页面上,因为项目紧张没有仔细的研究,最近在扩展自己的基础知识,偶然看到了这个东西,于是总结了一些博客园中关于这个svg的基础知识,只 ...

  9. unity中利用纯物理工具制作角色移动跳跃功能

    using System.Collections;using System.Collections.Generic;using UnityEngine; public class Player : M ...

  10. “Linux内核分析”实验一报告

    张文俊 + 原创作品转载请注明出处 + <Linux 内核分析> MOOC 课程 实验要求: 1.总结部分要求阐明自己对“计算机是如何工作的”理解: 2.博客中需要使用实验截图: 实验内容 ...