【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)

题面

atcoder

有 \(2^n\) 名选手,编号为 \(1\) 至 \(2^n\) 。现在这 \(2^n\) 名选手将进行 \(n\) 轮淘汰赛,决出胜者。若 \(x<y\) ,则 \(x\) 能够战胜 \(y\) 。但有 \(m\) 个例外,\(1\) 号选手会输给这 \(m\) 个选手。问有多少中排列方式使得\(1\)号选手取得胜利。\(n,m≤16\)。

(这是肖大佬的翻译)

题解

钦定\(1\)号站在一号位置(这个无所谓吧),剩下的第\(i\)个位置站的人是\(p_i\),那么首先\(1\)会和\(p_2\)打,然后和\(min(p_3,p_4)\),接下来是\(min(p_5,p_6,p_7,p_8)\),以此类推下去。

我们的方案数等于上述\(n\)个集合中每个集合的最小值都不是给定的\(m\)个人。

直接算不好搞,容斥考虑。钦定哪些块的最小值一定是给定的\(m\)个人,那么假设给这\(n\)个区间的人,也就是把这\(n\)块编号然后状压一下,那么方案数定义为\(f(S)\),那么最终的答案就是\(\sum (-1)^{|S|}f(S)\)。

至于这个\(f(S)\)怎么求?我们把所有数从大往小排序,考虑\(dp\),设\(f[i][S]\)表示最大的\(i\)个标号的人中,\(S\)所代表的子集所包含的区间中的最小值是给定的\(m\)个人中的一个。转移的话首先是这个人不放入任何一个集合中。另外是构成一个集合的最小值,枚举一下构成哪个集合,然后用组合数算一下方案数即可。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAX 17
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int bin[MAX],jc[1<<MAX],inv[1<<MAX],jv[1<<MAX];
int C(int n,int m){if(n<m)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int a[MAX],n,m,ans,f[MAX+1][1<<MAX],cnt[1<<MAX];
int main()
{
n=read();m=read();cnt[0]=jc[0]=bin[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;++i)bin[i]=bin[i-1]<<1;
for(int i=1;i<=bin[n];++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=bin[n];++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=bin[n];++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=bin[n];++i)cnt[i]=(i&1)?MOD-cnt[i>>1]:cnt[i>>1];
for(int i=1;i<=m;++i)a[i]=read();sort(&a[1],&a[m+1]);
f[m+1][0]=1;
for(int i=m;i;--i)
for(int t=0;t<bin[n];++t)
if(f[i+1][t])
{
add(f[i][t],f[i+1][t]);
int p=bin[n]-1-t;
for(int j=0;j<n;++j)
if(!(t&(1<<j)))
add(f[i][t|(1<<j)],1ll*C(p-a[i]+1,(1<<j)-1)*f[i+1][t]%MOD*jc[1<<j]%MOD);
}
for(int i=0;i<bin[n];++i)
add(ans,1ll*f[1][i]*jc[bin[n]-1-i]%MOD*cnt[i]%MOD);
ans=1ll*ans*bin[n]%MOD;
printf("%d\n",ans);
return 0;
}

【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)的更多相关文章

  1. ARC093F Dark Horse 容斥原理+DP

    题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...

  2. [动态规划]状态压缩DP小结

     1.小技巧 枚举集合S的子集:for(int i = S; i > 0; i=(i-1)&S) 枚举包含S的集合:for(int i = S; i < (1<<n); ...

  3. [POJ 2923] Relocation (动态规划 状态压缩)

    题目链接:http://poj.org/problem?id=2923 题目的大概意思是,有两辆车a和b,a车的最大承重为A,b车的最大承重为B.有n个家具需要从一个地方搬运到另一个地方,两辆车同时开 ...

  4. POJ 1185 炮兵阵地(动态规划+状态压缩)

    炮兵阵地 Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原( ...

  5. ACM学习历程—HDU1584 蜘蛛牌(动态规划 && 状态压缩 || 区间DP)

    Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么这些牌也跟着一起 ...

  6. HDOJ-1074(动态规划+状态压缩)

    Doing Homework HDOJ-1074 1.本题主要用的是状态压缩的方法,将每种状态用二进制压缩表示 2.状态转移方程:dp[i|(1<<j)]=min(dp[i|(1<& ...

  7. [ZOJ 3662] Math Magic (动态规划+状态压缩)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3662 之前写过这道题,结果被康神吐槽说代码写的挫. 的确,那时候 ...

  8. 动态规划状态压缩-poj1143

    题目链接:http://poj.org/problem?id=1143 题目描述: 代码实现: #include <iostream> #include <string.h> ...

  9. [AtCoder ARC093F]Dark Horse

    题目大意:有$2^n$个人,每相邻的两个人比赛一次.令两个人的编号为$a,b(a\leqslant b)$,若$a\neq 1$,则$a$的人获胜:否则若$b\in S$则$b$获胜,不然$1$获胜. ...

  10. 3.4 熟练掌握动态规划——状态压缩DP

    从旅行商问题说起—— 给定一个图,n个节点(n<=15),求从a节点出发,经历每个节点仅一次,最后回到a,需要的最短时间. 分析: 设定状态S代表当前已经走过的城市的集合,显然,S<=(1 ...

随机推荐

  1. JS 01 变量_数据类型_分支循环_数组

    点击直通车↓↓↓ 数据类型及数据类型的手动转换 数组 一.概念 JavaScript(JS)是一种基于对象和事件驱动.且可以与HTML标记语言混合使用的脚本语言,其编写的程序可以直接在浏览器中解释执 ...

  2. 2017-2018-2 20155224『网络对抗技术』Exp4:恶意代码分析

    原理与实践说明 实践目标 监控你自己系统的运行状态,看有没有可疑的程序在运行. 分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或sysinternals,systr ...

  3. 赚钱的小生意,VC对你没兴趣

    创业者,赚钱的生意就不要去找VC(风险投资)了,因为人家对你的生意没有兴趣. 无论是创业者,VC,股权投资散户,都需要对一个"生意"的规模有个总体的认识. 就"生意&qu ...

  4. JVM源码---教你傻瓜式编译openjdk7(JAVA虚拟机爱好者必看)

    LZ经过一个星期断断续续的研究,终于成功的搞定了JDK的成功编译与调试.尽管网络上的教程也有不少,包括源码中也有自带的编译步骤说明,但真正自己动手的话,还是会遇到不少意料之外的错误. 为了方便各位猿友 ...

  5. Unity3D与C#网站收藏

    siki学院(目前学习ing) http://www.sikiedu.com/ 雨松MOMO研究院 http://www.xuanyusong.com/ 知乎:Unity 开发教程相关回答(初步了解下 ...

  6. App推荐 | Google Tasks

    前不久,Google推出了一款移动任务管理应用Google Task,在使用2天后,写一下使用感受,并与Google同类产品Keep进行一个对比. 首先欣赏几张官方的App截图 然后来看一下官方的介绍 ...

  7. 机器学习英雄访谈录之 DL 实践家:Dominic Monn

    目录 机器学习英雄访谈录之 DL 实践家:Dominic Monn 正文 对我的启发 机器学习英雄访谈录之 DL 实践家:Dominic Monn Sanyam Bhutani 是 Medium 上一 ...

  8. CoreDNS Plugins ---> hosts

    需求 kubernetes集群外部有少量服务,kubernetes集群内部pod需要通过服务所在的主机的hostname访问服务. 解决方案 通过coredns的hosts插件配置kubernetes ...

  9. 实验吧ctf题库web题wp

    经历了学校的校赛,一度自闭,被大佬们刺激的要奋发图强. 1.后台登录 链接: http://ctf5.shiyanbar.com/web/houtai/ffifdyop.php 打开题目首先查看源码, ...

  10. mysql学习(4)python操作数据库

    整理了一下前面3期学的内容后,现在练习使用python去操作数据库 #!python3# coding:utf-8import pymysqlclass mysql_option(): def __i ...