题目描述

火星探险队的登陆舱将在火星表面着陆,登陆舱内有多部障碍物探测车。

登陆舱着陆后,探测车将离开登陆舱向先期到达的传送器方向移动。

探测车在移动中还必须采集岩石标本。

每一块岩石标本由最先遇到它的探测车完成采集。

每块岩石标本只能被采集一次。

岩石标本被采集后,其他探测车可以从原来岩石标本所在处通过。

探测车不能通过有障碍的地面。

本题限定探测车只能从登陆处沿着向南或向东的方向朝传送器移动,而且多个探测车可以在同一时间占据同一位置。

如果某个探测车在到达传送器以前不能继续前进,则该车所采集的岩石标本将全部损失。

用一个 \(\text{P}\times \text{Q}\) 网格表示登陆舱与传送器之间的位置。登陆舱的位置在 \((X_1,Y_1)\) 处,传送器 的位置在 \((X_P,Y_Q)\) 处。 给定每个位置的状态,计算探测车的最优移动方案,使到达传送器的探测车的数量最多, 而且探测车采集到的岩石标本的数量最多。

输入格式

文件的第一行为探测车数 \(\text{car}\) ,第二行为 \(\text{P}\) 的值,第三行为 \(\text{Q}\) 的值。

接下来的 \(\text{Q}\) 行是表示登陆舱与传送器之间的位置状态的 \(\text{P}\times \text{Q}\) 网格。

用三个数字表示火星表面位置的状态:0 表示平坦无障碍,1表示障碍,2 表示石块。

输出格式

程序运行结束时,输出每个探测车向传送器移动的序列。

每行包含探测车号和一个移动方向,0 表示向南移动,1 表示向东移动。

样例

样例输入

2
10
8
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 2 0 0 0 0
1 1 0 1 2 0 0 0 0 1
0 1 0 0 2 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0
0 1 2 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

样例输出

1 1
1 1
1 1
1 1
1 0
1 0
1 1
1 1
1 1
1 1
1 0
1 0
1 1
1 0
1 0
1 0
2 1
2 1
2 1
2 1
2 0
2 0
2 0
2 0
2 1
2 0
2 0
2 1
2 0
2 1
2 1
2 1

数据范围与提示

\(1\leq P,Q,\text{car}\leq 35\)

题解

经典套路

一个点只能贡献一次权值,但可以重复经过

那么就拆点,拆成入点和出点,之间连两条边,一条容量为 \(1\) ,费用为贡献,另一条容量为 \(inf\) ,费用为 \(0\)

原来的 \(u\) 连向 \(v\) 的边变成从 \(u\) 的出点连向 \(v\) 的入点

跑最大费用流即可

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=2500+10,MAXM=(MAXN<<2)+10,inf=0x3f3f3f3f;
int n,m,k,e=1,G[40][40],beg[MAXN],cur[MAXN],vis[MAXN],level[MAXN],clk,nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],was[MAXM<<1],p[MAXN],s,t,answas,all,dr[2][2]={{0,1},{1,0}};
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return (x<y?x:y);}
template<typename T> inline T max(T x,T y){return (x>y?x:y);}
inline int id(int x,int y)
{
return (x-1)*m+y;
}
inline void insert(int x,int y,int z,int w)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=w;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-w;
}
inline bool bfs()
{
for(register int i=1;i<=t;++i)level[i]=-inf;
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]<level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=-inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(cap[i],maxflow));
cap[i]-=f;
cap[i^1]+=f;
res+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline bool adfs(int opt,int x)
{
if(x==id(n,m))return true;
for(register int i=beg[x];i;i=nex[i])
if(cap[i^1]&&(i&1^1))
{
cap[i^1]--;
if(to[i]<=all)printf("%d %d\n",opt,to[i]==x+1-all);
if(adfs(opt,to[i]))return true;
}
return false;
}
int main()
{
read(k);read(m);read(n);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)read(G[i][j]);
all=n*m,s=all+all+1,t=s+1;
if(G[1][1]!=1)insert(s,id(1,1),k,0);
if(G[n][m]!=1)insert(id(n,m)+all,t,k,0);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)
{
if(G[i][j]!=1)insert(id(i,j),id(i,j)+all,inf,0);
if(G[i][j]==2)insert(id(i,j),id(i,j)+all,1,1);
for(register int p=0;p<2;++p)
{
int dx=i+dr[p][0],dy=j+dr[p][1];
if(dx<1||dx>n||dy<1||dy>m||G[dx][dy]==1)continue;
insert(id(i,j)+all,id(dx,dy),inf,0);
}
}
int ans=Dinic();
if(G[1][1]!=1)
for(register int i=1;i<=ans;++i)adfs(i,id(1,1));
return 0;
}

【刷题】LOJ 6225 「网络流 24 题」火星探险问题的更多相关文章

  1. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  2. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  3. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  4. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  5. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  6. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  7. loj #6121. 「网络流 24 题」孤岛营救问题

    #6121. 「网络流 24 题」孤岛营救问题   题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...

  8. loj #6226. 「网络流 24 题」骑士共存问题

    #6226. 「网络流 24 题」骑士共存问题   题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...

  9. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

随机推荐

  1. Java是如何读到hbase-site.xml 的内容的

    Java是如何读到hbase-site.xml 的内容的 Java客户端使用的配置信息是被映射在一个HBaseConfiguration 实例中. HBaseConfiguration有一个工厂方法, ...

  2. maven使用出现的错误

    修改mvn archetype:create  改成mvn archetype:generate 刚开始学习用Maven, 装好了以后生成一个新的project mvnarchetype:genera ...

  3. OO——电梯作业总结

    目录 电梯作业总结 程序结构与复杂度的分析 第一次作业 第二次作业 第三次作业 程序BUG的分析 互测 自动评测 有效性 总结 电梯作业总结 程序结构与复杂度的分析 第一次作业 1.设计思路 第一次作 ...

  4. document.domain 跨域问题[转]

    document.domain用来得到当前网页的域名.比如打开百度,在地址栏里输入: javascript:alert(document.domain); //www.baidu.com 弹出窗体: ...

  5. 2017-2018-2 20155231《网络对抗技术》实验五: MSF基础应用

    2017-2018-2 20155231<网络对抗技术>实验五: MSF基础应用 实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 实验内容 (1)各种搜索技巧的应用 比如IP2L ...

  6. python 回溯法 子集树模板 系列 —— 8、图的遍历

    问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E -- ...

  7. Scala学习(二)练习

    Scala控制结构和函数&练习 1. 一个数字如果为正数,则它的signum为1:如果是负数,则signum为-1:如果为0,则signum为0:编写一个函数来计算这个值 简单逻辑判断: 测试 ...

  8. H5——video百花齐放(浏览器自带的播放器)

    前言 手机自带浏览器的H5播放器 真是百花齐放啊(各个手机厂家有各个厂家的控件UI) 需求 手机浏览器木有控件条 自动播放 全屏处理 监控进度条 快进后退 自动播放 自动播放就给跪了 ios 安卓 为 ...

  9. iOSApp上下有黑边

    如图: 这种情况就是没有启动页导致的,加了启动页图片之后就不会再出现了. 设置启动页的方法: http://www.cnblogs.com/BK-12345/p/5218229.html 有的人说我加 ...

  10. Azure : 通过 SendGrid 发送邮件

    SendGrid 是什么? SendGrid 是架构在云端的电子邮件服务,它能提供基于事务的可靠的电子邮件传递.并且具有可扩充性和实时分析的能力.常见的用例有:1. 自动回复用户的邮件2. 定期发送信 ...