51Nod 1175 区间中第K大的数 (可持久化线段树+离散)
第1行:1个数N,表示序列的长度。(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9)
第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 50000)
第N + 3 - N + Q + 2行:每行3个数,对应查询的起始编号i和结束编号j,以及k。(0 <= i <= j <= N - 1,1 <= k <= j - i + 1)
共Q行,对应每一个查询区间中第K大的数。
5
1
7
6
3
1
3
0 1 1
1 3 2
3 4 2
7
6
1 思路:
可持久化线段树入门题。离散化处理下就好了
其实可持久化线段树跟之前写过的线段树动态开点是差不多的,都是为了维护状态,需要开很多棵线段树来维护。
可持久化线段树维护的是每一次修改后的状态。比如这道题我们就可以利用他的能够查询历史版本的特性来解决 ps:之前有点错误,改正了一遍 实现代码:
#include<bits/stdc++.h>
using namespace std;
const int M = 2e6+;
int idx; //记录目前一共建过多少节点
int sum[M],ls[M],rs[M]; //区间和,左儿子,右儿子
int rt[M]; //每次修改对应的根节点编号
int a[M],ans[M],lst[M],cnt,num[M],n,m; struct node{
int id,l,r,x;
bool operator < (const node &b) const {
return r < b.r;
}
}q[M]; void build(int &k,int l,int r){
//k传的是地址,这样在一层函数中修改k就可以直接修改上一层的lson和rson了
k = ++idx; //为新节点标号
if(l == r) return ; //一定要在创建新节点之后再return
int m = (l + r) >> ;
build(ls[k],l,m);
build(rs[k],m+,r);
} void change(int old,int &k,int l,int r,int p,int x){
k = ++idx; //修改的时候要创建新点
ls[k] = ls[old]; rs[k] = rs[old];
sum[k] = sum[old] + x; //先把原来节点的信息复制过来,顺便修改区间和
if(l == r) return ; //先建点后return
int m = (l + r) >> ;
if(p <= m) change(ls[old],ls[k],l,m,p,x);
else change(rs[old],rs[k],m+,r,p,x);
} int query(int k,int old,int l,int r,int x){
if(l == r) return l;
int m = (l + r) >> ;
int ret = sum[rs[k]] - sum[rs[old]];
if(ret >= x)
return query(rs[k],rs[old],m+,r,x);
else
return query(ls[k],ls[old],l,m,x-ret);
} int find(int x){
return lower_bound(num+,num + cnt + , x) - num;
} int main()
{
ios::sync_with_stdio();
cin.tie(); cout.tie();
cin>>n;
for(int i = ;i <= n;i ++){
cin>>lst[i];a[i] = lst[i];
}
sort(lst+,lst+n+);
for(int i = ;i <= n;i ++){
if(i == ||lst[i] != lst[i-])
num[++cnt] = lst[i];
}
build(rt[],,cnt);
cin>>m;
for(int i = ;i <= m;i ++){
q[i].id = i;
cin>>q[i].l; q[i].l ++;
cin>>q[i].r; q[i].r ++;
cin>>q[i].x;
}
sort(q+,q+m+);
for(int i = ,j = ;i <= n;i ++){
change(rt[i-],rt[i],,cnt,find(a[i]),);
while(q[j].r == i){
ans[q[j].id] = query(rt[i],rt[q[j].l-],,cnt,q[j].x);
j++;
}
}
for(int i = ;i <= m;i ++){
printf("%d\n",num[ans[i]]);
}
return ;
}
51Nod 1175 区间中第K大的数 (可持久化线段树+离散)的更多相关文章
- 51nod p1175 区间中第K大的数
1175 区间中第K大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 一个长度为N的整数序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有 ...
- 51nod1175 区间中第K大的数
裸的主席树. #include<cstdio> #include<cstring> #include<cctype> #include<algorithm&g ...
- 51nod 区间中第K大的数
区间中第K大的数 基准时间限制:1 秒 空间限制:131072 KB 一个长度为N的整数序列,编号0 - N - 1.进行Q次查询,查询编号i至j的所有数中,第K大的数是多少. 例如: 1 7 6 ...
- 动态求区间K大值(权值线段树)
我们知道我们可以通过主席树来维护静态区间第K大值.我们又知道主席树满足可加性,所以我们可以用树状数组来维护主席树,树状数组的每一个节点都可以开一颗主席树,然后一起做. 我们注意到树状数组的每一棵树都和 ...
- bzoj4504 k个串 kstring 可持久化线段树 (标记永久化)
[fjwc2015]k个串 kstring [题目描述] 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只 ...
- 【XSY2720】区间第k小 整体二分 可持久化线段树
题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n ...
- 可持久化线段树(主席树)(图文并茂详解)【poj2104】【区间第k大】
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=63740442 向大(hei)佬(e)实力学(di ...
- 51NOD 1105 第K大的数
数组A和数组B,里面都有n个整数. 数组C共有n^2个整数,分别是: A[0] * B[0],A[0] * B[1] ...... A[0] * B[n-1] A[1] * B[0],A[1] * B ...
- AC日记——第K大的数 51nod 1105
1105 第K大的数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 数组A和数组B,里面都有n个整数.数组C共有n^2个整数,分别是A[0] * ...
随机推荐
- C#数组、js数组、json
C#数组 参考地址C#之数组 什么是数组?数组是一种数据结构,包含同一个类型的多个元素.数组的声明:int[] myIntArray; 注:声明数组时,方括号 [] 必须跟在类型后面,而不是变量名后面 ...
- 关于CAN总线的被动错误标志的问题?
关于CAN总线的被动错误标志的问题? 关于CAN总线的被动错误标志,协议中的描述是"处于被动错误状态的单元检测出错误时,输出被动错误标志". 对此有几个疑问: 1.被动错误标志的发 ...
- 2017-2018 Exp1 PC平台逆向破解 20155214
目录 Exp1 PC平台逆向破解 实验内容 知识点 官方源 中科大源 上海交大的源 新加坡源 debain源 debian安全更新源 163源的地址 阿里云kali源 启发 评论 Exp1 PC平台逆 ...
- P2463 [SDOI2008]Sandy的卡片
写一种\(O(nm)\)的做法,也就是\(O(\sum 串长)\)的. 先通过差分转化,把每个数变成这个数与上一个数的差,第一个数去掉,答案就是最长公共子串+1 按照套路把所有串拼起来,中间加一个分隔 ...
- 微信小程序之生命周期
1. 整个小程序生命周期 App({}) //app.js App({ onLaunch: function (options) { // 小程序初始化完成时(全局只触发一次) // 程序销毁(过一段 ...
- 通过实例来理解paxos算法
背景 Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是 LaTeX 中的”La”,此人现在在微软研究院)于1990年提出的一种基于消息传递的一致性算法.由于算法难以理解起初并没有 ...
- 设计模式 笔记 模版方法模式 Template Method
//---------------------------15/04/28---------------------------- //TemplateMethod 模版方法模式----类行为型模式 ...
- Spring+SpringMVC+MyBatis整合基础篇
基础篇 Spring+SpringMVC+MyBatis+easyUI整合基础篇(一)项目简介 Spring+SpringMVC+MyBatis+easyUI整合基础篇(二)牛刀小试 Spring+S ...
- Win7 64位操作系统连接HP 1010打印机完美解决方案
工作的第一天就遇到问题,新电脑无法连接老式的HP1010打印机,64位Windows7系统无法连接32位XP网络共享打印机,而32位WIN7就可以. 这里分享个简单的解决方法: 先去下载 ...
- Revit二次开发-根据视图阶段(Phase)创建房间
最近开发业务中,有一个自动创建房间的功能,很自然的想到了Document.NewRooms2方法.但是当前功能的特殊之处在于,Revit项目视图是分阶段(Phase)的,不同阶段的房间是互相独立的. ...