解决的目标问题:多分类问题,比如车辆的外形和颜色,苹果的大小和颜色;多任务:车牌角点的定位和车牌的颜色。定位在技术上属于回归,车牌颜色判断则属于分类。
  
  技术点
  
  caffe默认是单输入任务单标签的,也就是一个样本,其任务只有一个,标签只有一个,比如图片是什么颜色,图片是什么物体。
  
  # ${caffe_src_root}/tools/convert_imageset.cpp 第121行
  
  status = ReadImageToDatum(root_folder + lines[line_id].first,
  
  lines[line_id].second, resize_height, resize_width, is_color,
  
  enc, &datum);
  
  ## 其中 ReadImageToDatum的定义如下 ${caffe_src_root}/include/caffe/util/io.hpp
  
  bool ReadImageToDatum(const string& filename, const int label,
  
  const int height, const int width, const bool is_color,
  
  const std::string & encoding, Datum* datum);
  
  ## ${caffe_src_root}/src/caffe/util/io.cpp 中的该函数实现,涉及到Datum的定义,需要把Datum定义修改成也要支持多标签
  
  bool ReadImageToDatum(const string& filename, const int label,
  
  const int height, const int width, const bool is_color,
  
  const std::string & encoding, Datum* datum) {
  
  cv::Mat cv_img = ReadImageToCVMat(filename, height, width, is_color);
  
  if (cv_img.data) {
  
  if (encoding.size()) {
  
  if ( (cv_img.channels() == 3) == is_color && !height && !width &&
  
  matchExt(filename, encoding) )
  
  return ReadFileToDatum(filename, label, datum);
  
  std::vector<uchar> buf;
  
  cv::imencode("."+encoding, cv_img, buf);
  
  datum->set_data(std::string(reinterpret_cast<char*>(&buf[0]),
  
  buf.size()));
  
  datum->set_label(label);
  
  datum->set_encoded(true);
  
  return true;
  
  }
  
  CVMatToDatum(cv_img, datum);
  
  datum->set_label(label);
  
  return true;
  
  } else {
  
  return false;
  
  }
  
  }
  
  为了支持多任务,多标签,首先要解决输入问题。比如一个样本 定义如下:
  
  vehicle/1.jpg 0 1
  
  修改源码支持多标签
  
  其中第一个属性是车辆外形,0代表sedian,第二个属性是车身颜色,1代表白色。假如图片是60x60的RGB图像, 如果是单任务多属性输入,一个简单的更改方案是把ReadImageToDatum函数修改成如下定义,并修改相关的实现函数和convert_imageset.cpp
  
  bool ReadImageToDatum(const string& filename, const vector<int> & labels,
  
  const int height, const int width, const bool is_color,
  
  const std::string & encoding, Datum* datum);
  
  faster rcnn采用自定义的python输入层作用训练输入,输入有多个labels,检测目标的roi,其中bbox_targets, bbox_inside_weights, bbox_outside_weights是作为SmoothL1Loss损失函数的输入。自定义python输入层的源码参考 py-faster-rcnn/lib/roi_data_layer/
  
  name: "VGG_ILSVRC_16_layers"
  
  layer {
  
  name: 'data'
  
  type: 'Python'
  
  top: 'data'
  
  top: 'rois'
  
  top: 'labels'
  
  top: 'bbox_targets'
  
  top: 'bbox_inside_www.jiahuayulpt.com weights'
  
  top: 'bbox_outside_weights'
  
  python_param {
  
  module: 'roi_data_www.baohuayule.net/ layer.layer'
  
  layer: 'RoIDataLayer'
  
  param_str: "'num_classes': 21"
  
  }
  
  }
  
  从https://github.com/HolidayXue/CodeSnap/blob/master/convert_multilabel.cpp源码修改,保存到${caffe_root}/tools/convert_multi_label_www.yongshi123.cn imageset.cpp,重新编译caffe工程,在${caffe_root}目录下运行该工具,
  
  .build_release/tools/convert_multi_label_imageset.bin -resize_width=256 -resize_height=256 ~/my\ workspace/bounding-box-tool/mlds/train.list /train-data/vehicle-type-color-dataset/
  
  多数据源输入支持多标签
  
  假设对于HxW的RGB图像,转换成caffe的blob定义上1x3xHxW,对于一个任务的有n个标签,则其blob定义是1xnx1x1,每个任务对应一个blob,???那么可以在在第二维度对两个blob进行拼接???
  
  拼接之后再从第二维度对blob进行切分操作,切分出多个blob,作为每个属性训练任务的输入
  
  拼接之后进行常规的卷积操作,只是在最后的每个任务的损失函数之前的fc层再切分,如下图
  
  训练
  
  参考faster-rcnn的模型,可以看到损失函数是相互独立的,但多了一个weight参数,猜测是caffe在训练时,按下面的公式计算总的损失
  
  Lt = w1*L1 + w2 * L2
  
  faster-rcnn中经过一系列卷积层后,连接了一个ROIPooling层,再接上FC6、FC7层,从最后一个FC7层一分为2,分别接一个cls_score的FC层和名为loss_cls的SoftMaxWithLoss,接bbox_pred的FC层和名为loss_bbox的SmoothL1Loss的回归层
  
  参考:
  
  https://arxiv.org/abs/1604.02878v1
  
  https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html?from=timeline&isappinstalled=1
  
  https://kpzhang93.github.io/MTCNN_face_www.078886.cn detection_alignment/paper/spl.pdf
  
  https://github.com/happynear/MTCNN_face_detection_alignment
  
  https://github.com/naritapandhe/Gender-Age-Classification-CNN
  
  https://github.com/cunjian/multitask_CNN
  
  https://zhuanlan.zhihu.com/p/22190532
  
  https://github.com/rbgirshick/ www.tiaotiaoylzc.com py-faster-rcnn/blob/master/models/pascal_voc/VGG16/fast_rcnn/train.prototxt
  
  ${caffe_source_root}/examples/pascal-multilabel-with-datalayer.ipynb
  
  http://www.cnblogs.com/yymn/articles/7741741.html
  
  https://yq.aliyun.com/ziliao/572047
  
  https://blog.csdn.net/u013010889/article/details/53098346
  
  caffe网络在线可视化工具: http://www.yongshiyule178.com ethereon.github.io/netscope/#/editor

caffe多任务、多标签的更多相关文章

  1. Caffe实现多标签输入,添加数据层(data layer)

    因为之前遇到了sequence learning问题(CRNN),里面涉及到一张图对应多个标签.Caffe源码本身是不支持多类标签数据的输入的. 如果之前习惯调用脚本create_imagenet.s ...

  2. caffe读取多标签的lmdb数据

    问题描述: lmdb文件支持数据+标签的形式,但是却只能写入一个标签,引入多标签的解决方法有很多,这儿详细说一下我的办法:制作多个data数据,分别加入一个标签.我的方法只适用于标签数量较少的情况,标 ...

  3. caffe实现多任务学习

    Github: https://github.com/Haiyang21/Caffe_MultiLabel_Classification Blogs  1. 采用多label的lmdb+Slice L ...

  4. 多标签caffe重新编译

    说明: Caffe自带的图像转LMDB接口只支持单label,对于多label的任务,可以使用HDF5的格式,也可以通过修改caffe代码来实现.本篇文章介绍怎么通过修改DataLayer来实现带Mu ...

  5. MachineLN博客目录

    MachineLN博客目录 https://blog.csdn.net/u014365862/article/details/78422372 本文为博主原创文章,未经博主允许不得转载.有问题可以加微 ...

  6. Caffe-SSD相关源码说明和调试记录

    1      对Blob的理解及其操作: Blob是一个四维的数组.维度从高到低分别是: (num_,channels_,height_,width_) 对于图像数据来说就是:图片个数,彩色通道个数, ...

  7. 下载imagenet2012数据集,以及label说明

    updated@2018-12-07 15:22:08 官方下载地址:http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads , ...

  8. caffe 根据txt生成多标签LMDB数据

    1. 前提: 已经准备好train.txt, test.txt文件, 格式如下 此处有坑, 如果是windows下生成txt, 换行符为\r\n, 需要替换成 \n才能在linux运行. 可以使用se ...

  9. Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)

    适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...

随机推荐

  1. OpenShift-EFK日志管理

    1.准备工作 思路: 在OpenShift容器平台上以daemonset方式部署Fluentd收集各节点中的日志.更改其配置让日志输出到外部Elasticsearch中,最终通过Kibana展示. 资 ...

  2. 启动hbase shell报错:org.apache.hadoop.hbase.ipc.ServerNotRunningYetException: Server is not running yet

    查看日志发现:Waiting for dfs to exit safe mode 这说明HDFS目前处于安全模式,需要退出才行,于是进入Namdenode节点,执行命令: hdfs dfsadmin ...

  3. Scala--映射和元组

    一.构造映射 val scores = Map("Jim"->10, ("Tom",20), "Sam"->44) //key- ...

  4. Scala--数组相关操作

    一.定长数组 Array定长数组,访问数组元素需要通过()  数组长度是固定的,但是内容可以修改 val nums = new Array[Int](10) //长度为10的int数组 初始化为0 v ...

  5. 大数据入门第十六天——流式计算之storm详解(二)常用命令与wc实例

    一.常用命令 1.提交命令 提交任务命令格式:storm jar [jar路径] [拓扑包名.拓扑类名] [拓扑名称] torm jar examples/storm-starter/storm-st ...

  6. flask, SQLAlchemy, sqlite3 实现 RESTful API 的 todo list, 同时支持form操作

    flask, SQLAlchemy, sqlite3 实现 RESTful API, 同时支持form操作. 前端与后台的交互都采用json数据格式,原生javascript实现的ajax.其技术要点 ...

  7. Codeforces 734E Anton and Tree(缩点+树的直径)

    题目链接: Anton and Tree 题意:给出一棵树由0和1构成,一次操作可以将树上一块相同的数字转换为另一个(0->1 , 1->0),求最少几次操作可以把这棵数转化为只有一个数字 ...

  8. libgdx相关知识点

    Gdx.graphics.setContinuousRendering(false); 设置图像为非连续自动渲染. 设置Opengl的混合模式,支持alpha属性 Gdx.gl.glBlendFunc ...

  9. idea 中全局查找不到文件 (两shift),单页搜索不到关键字的原因

    全局查找不到文件是因为把要找的目录的本级或者上级设置为了额外的,所以自然找不到 而单页搜索不到内容是因为设置了words关键字,这个要全部都输入完才能找到(也就是整个关键字进行匹配,匹配到了整体才会查 ...

  10. Express入门介绍vs实例讲解

    下午在团队内部分享了express相关介绍,以及基于express的实例.内容提纲如下. 什么是Express 为什么要用Express 路由规则 一切皆中间件 实例:Combo Applicatio ...